Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067304    DOI: 10.1088/1674-1056/21/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Far-infrared electroluminescence characteristics of an Si-based photodiode under a forward DC bias current

Xiao Wen-Bo(肖文波)a), He Xing-Dao(何兴道)a), Zhang Zhi-Min(张志敏)a), Gao Yi-Qing(高益庆)a), and Liu Jiang-Tao(刘江涛)b)
a. Key Laboratory of Nondestructive Test (Ministry of Education),Nanchang Hangkong University, Nanchang 330063, China;
b. Department of Physics, Nanchang University, Nanchang 330031, China
Abstract  At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investigated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research.
Keywords:  photodiode      electroluminescence images      electroluminescence intensity  
Received:  08 November 2011      Revised:  07 December 2011      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.60.Fi (Electroluminescence)  
  42.87.-d (Optical testing techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904059, 41066001, 61072131, 61177096), Aeronautical Science Foundation of China (Grant No. 2010ZB56004), the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No. GJJ11176), the Open Fund of the Key Laboratory of Nondestructive Testing (Ministry of Education, Nanchang Hangkong University) (Grant No. ZD201029005), the Natural Science Foundation of Jiangxi Province, China (Grant No. 2009GZW0024), and the Graduate Innovation Base of Jiangxi Province, China.
Corresponding Authors:  Xiao Wen-Bo     E-mail:  xiaowenbo1570@163.com

Cite this article: 

Xiao Wen-Bo(肖文波), He Xing-Dao(何兴道), Zhang Zhi-Min(张志敏), Gao Yi-Qing(高益庆), and Liu Jiang-Tao(刘江涛) Far-infrared electroluminescence characteristics of an Si-based photodiode under a forward DC bias current 2012 Chin. Phys. B 21 067304

[1] McMichael A J, Butler C D and Folke C 2003 Science 302 1919
[2] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
[3] Hu Z H, Liao X B, Liu Z M, Xia C F and Chen T J 2003 Chin. Phys. 12 112
[4] Shah A, Torres P, Tscharner R, Wyrsch N and Keppner H 1999 Science 258 692
[5] Zhou J, Di M D, Sun T T, Sun Y T and Wang H 2010 Acta Phys. Sin. 59 8870 (in Chinese)
[6] Han D X, Wang W L and Zhang Z 1999 Acta Phys. Sin. 48 1484 (in Chinese)
[7] BrÜggemann R and Olibet S 2010 Energy Procedia 2 19
[8] Breitenstein O, Bauer J, Trupke T and Bardos R A 2008 Prog. Photovolt: Res. Appl. 16 325
[9] Hinken D, Ramspeck K, Bothe K, Fischer B and Brendel R 2007 Appl. Phys. Lett. 91 182104
[10] Fuyuki T, Kondo H, Yamazaki T, Takahashi Y and Uraoka Y 2005 Appl. Phys. Lett. 86 262108
[11] Wang J, Zhao Y, Xie W F, Duan Y, Chen P and Liu S Y 2011 Acta Phys. Sin. 60 107203 (in Chinese)
[12] Zhang Y Y, Fan G H, Zhang Y and Zheng S W 2011 Acta Phys. Sin. 60 028503 (in Chinese)
[13] Jenny N 2003 The Physics of Solar Cells (London: Imperial College Press) pp. 145-176
[14] W黵fel P, Trupke T, Puzzer T, Schäffer E, Warta W and Glunz S W 2007 J. Appl. Phys. 101 123110
[15] Fuyuki T, Kondo H, Kaji Y, Ogane A and Takahashi Y 2007 J. Appl. Phys. 101 023711
[16] Sze S M and Kwok K N 2007 Physics of Semiconductor Devices (Hoboken: John Wiley & Sons) pp. 16-50
[17] M醨til I, Redondo E and Ojeda A 1997 J. Appl. Phys. 81 2442
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[3] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[4] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
[5] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[6] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[7] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[8] Scalability of dark current in silicon PIN photodiode
Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞). Chin. Phys. B, 2018, 27(4): 048501.
[9] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[10] Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu(朱阁), Fu Zheng(郑福), Chao Wang(王超), Zhibin Sun(孙志斌), Guangjie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2016, 25(11): 118505.
[11] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[12] A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method
A. Tataroğlu, A. A. Hendi, R. H. Alorainy, F. Yakuphanoğlu. Chin. Phys. B, 2014, 23(5): 057504.
[13] A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure
Cao Chen (曹琛), Zhang Bing (张冰), Wu Long-Sheng (吴龙胜), Li Na (李娜), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2014, 23(12): 124215.
[14] High bandwidth surface-illuminated InGaAs/InP uni-travelling-carrier photodetector
Li Chong (李冲), Xue Chun-Lai (薛春来), Li Chuan-Bo (李传波), Liu Zhi (刘智), Cheng Bu-Wen (成步文), Wang Qi-Ming (王启明). Chin. Phys. B, 2013, 22(11): 118503.
[15] MEH-PPV/Alq3-based bulk heterojunction photodetector
Zubair Ahmad, Mahdi Hasan Suhail, Issam Ibrahim Muhammad, Wissam Khayer Al-Rawi, Khaulah Sulaiman, Qayyum Zafar, Ahmad Sazali Hamzah, Zurina Shaameri. Chin. Phys. B, 2013, 22(10): 100701.
No Suggested Reading articles found!