Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100701    DOI: 10.1088/1674-1056/22/10/100701
GENERAL Prev   Next  

MEH-PPV/Alq3-based bulk heterojunction photodetector

Zubair Ahmada, Mahdi Hasan Suhailb, Issam Ibrahim Muhammadb, Wissam Khayer Al-Rawic, Khaulah Sulaimana, Qayyum Zafara, Ahmad Sazali Hamzahd, Zurina Shaamerid
a Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia;
b Department of Physics, College of Science, University of Baghdad, Iraq;
c Department of Physics, College of Science, University of Anbar, Iraq;
d Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
Abstract  In this paper, we present the effect of varied illumination levels on the electrical properties of the organic blend bulk heterojuction (BHJ) photodiode. To prepare the BHJ blend, poly(2-methoxy-5(2’-ethylhexyloxy) phenylenevinylene (MEH-PPV) and aluminum-tris-(8-hydroxyquinoline) (Alq3) are used as donor and acceptor materials, respectively. In order to fabricate the photodiode, a 40-nm thick film of poly(3, 4-ethylendioxythiophene):poly(styrensulfonate) (PEDOT:PSS) is primarily deposited on a cleaned ITO coated glass substrate by spin coating technique. The organic photosensitive blend is later spun coated on the PEDOT:PSS layer, followed by the lithium fluoride (LiF) and aluminium (Al) thin films deposition by thermal evaporation. The optical properties of the MEH-PPV:Alq3 blend thin films are investigated using photoluminescence (PL) and UV-Vis spectroscopy. The photodiode shows good photo-current response as a function of variable illumination levels. The responsivity value ~ 8 mA/W at 3 V is found and the ratio of photo-current to dark current (IPh/IDark) is found to be 1.24.
Keywords:  MEH-PPV      Alq3      bulk heterojunction      photodiode  
Received:  04 February 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.79.Pw (Imaging detectors and sensors)  
  42.70.Jk (Polymers and organics)  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the Long Term Research Grant Scheme (LRGS), Ministry of Higher Education, Malaysia (Grant No. LR003/2011A).
Corresponding Authors:  Zubair Ahmad     E-mail:  zubairtarar@um.edu.my

Cite this article: 

Zubair Ahmad, Mahdi Hasan Suhail, Issam Ibrahim Muhammad, Wissam Khayer Al-Rawi, Khaulah Sulaiman, Qayyum Zafar, Ahmad Sazali Hamzah, Zurina Shaameri MEH-PPV/Alq3-based bulk heterojunction photodetector 2013 Chin. Phys. B 22 100701

[1] Konstantatos G and Sargent E H 2010 Nat. Nanotechnol. 5 391
[2] Basak D, Amin G, Mallik B, Paul G and Sen S 2003 J. Crystal Growth 256 73
[3] Servati P, Colli A, Hofmann S, Fu Y, Beecher P, Durrani Z, Ferrari A, Flewitt A, Robertson J and MilneW2007 Physica E: Low-dimensional Systems and Nanostructures 38 64
[4] Hofmann S, Ducati C, Neill R, Piscanec S, Ferrari A, Geng J, Dunin-Borkowski R and Robertson J 2003 J. Appl. Phys. 94 6005
[5] Luo L B, Yang X B, Liang F X, Jie J S, Li Q, Zhu Z F, Wu C Y, Yu Y Q and Wang L 2012 CrystEngComm 14 1942
[6] Soci C, Zhang A, Bao X Y, Kim H, Lo Y andWang D 2010 J. Nanosci. Nanotechnol. 10 1430
[7] Amin M, Manzoor U, Islam M, Bhatti A S and Shah N A 2012 Sensors 12 13842
[8] Walker D, Zhang X, Kung P, Saxler A, Javadpour S, Xu J and Razeghi M 1996 Appl. Phys. Lett. 68 2100
[9] Li J, Fan Z, Dahal R, Nakarmi M, Lin J and Jiang H 2006 Appl. Phys. Lett. 89 213510
[10] Ahn D 2012 Photodetector Capable of Detecting the Visible Light Spectrum 2012, US Patent 20 120 235 028
[11] Volintiru I 2008 Eindhoven: Technische Universities Eindhoven
[12] Sayyad M H, Ahmad Z, Karimov K S, Yaseen M and Ali M 2009 J. Phys. D: Appl. Phys. 42 105112
[13] Ahmad Z, Sayyad M H, Yaseen M, Aw K C, M-Tahir M and Ali M 2011 Sensors and Actuators B 155 81
[14] Sayyad M, Shah M, Karimov K, Ahmad Z, SaleemMand Maroof Tahir M 2008 J. Optoelectron. Adv. Mater. 10 2805
[15] Abdullah S M, Ahmad Z, Aziz F and Sulaiman K 2012 Organic Electronics 13 2532
[16] Dong H, Zhu H, Meng Q, Gong X and Hu W 2012 Chem. Soc. Rev. 41 1754
[17] Aziz F, Sayyad M, Karimov K S, Saleem M, Ahmad Z and Khan S M 2010 J. Semicond. 31 114002
[18] Ahmad Z, Abdullah S M and Sulaiman K 2012 Sensors and Actuators A: Physical 179 146
[19] Sayyad M H, Shah M, Karimov K S, Ahmad Z, Saleem M and Tahir M M 2008 J. Optoelectron. Adv. Mater. 10 2805
[20] Saleem M, Sayyad M H, Karimov K S, Ahmad Z, Shah M, Yaseen M, Khokhar I and Ali M 2008 J. Optoelectron. Adv. Mater. 10 1468
[21] Sayhan I, BauersfeldML,Woellenstein J and Becker T 2008 Microsystem Technologies 14 659
[22] Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G and Xu X R 2010 Chin. Phys. B 19 118601
[23] Gilch H and Wheelwright W 1966 Journal of Polymer Science Part A-1: Polymer Chemistry 4 1337
[24] Reddy V S, Das K, Ray S and Dhar A 2012 Proceeding of ASID’s 6 8
[25] Wang X Y and Weck M 2005 Macromolecules 38 7219
[26] Pierret R F 1996 Semiconductor Device Fundamentals (MA: Addison-Wesley Reading)
[27] Yakuphanoglu F 2008 Sensors and Actuators A: Physical 141 383
[28] Pejova B, Tanuševski A and Grozdanov I 2005 J. Solid State Chem. 178 1786
[29] Qasrawi A and Gasanly N 2002 Physica Status Solidi (a) 194 81
[30] Park S H, Ogino K and Sato H 2000 Synthetic Metals 113 135
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[3] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[4] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
[5] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[6] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[7] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[8] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[9] Scalability of dark current in silicon PIN photodiode
Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞). Chin. Phys. B, 2018, 27(4): 048501.
[10] Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏). Chin. Phys. B, 2017, 26(8): 087307.
[11] Study of a ternary blend system for bulk heterojunction thin film solar cells
Zubair Ahmad, Farid Touati, Shakoor R A, Al-Thani N J. Chin. Phys. B, 2016, 25(8): 080701.
[12] Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu(朱阁), Fu Zheng(郑福), Chao Wang(王超), Zhibin Sun(孙志斌), Guangjie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2016, 25(11): 118505.
[13] Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance
Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛). Chin. Phys. B, 2015, 24(7): 078503.
[14] Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells
Zhu Jian-Zhuo (朱键卓), Qi Ling-Hui (祁令辉), Du Hui-Jing (杜会静), Chai Ying-Chun (柴莺春). Chin. Phys. B, 2015, 24(10): 108501.
[15] A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method
A. Tataroğlu, A. A. Hendi, R. H. Alorainy, F. Yakuphanoğlu. Chin. Phys. B, 2014, 23(5): 057504.
No Suggested Reading articles found!