Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078503    DOI: 10.1088/1674-1056/24/7/078503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance

Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛)
Tsinghua National Laboratory for Information Science and Technology/State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  

A backside illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) with wide bandwidth and high saturation power is fabricated and investigated. The device structure is optimized to reduce the capacitance and resistance. For the 22-μm-diameter device, the maximum responsivity at 1.55 μm is 0.5 A/W, and the 3-dB cutoff frequency reaches up to 28 GHz. The output photocurrent at the 1-dB compression point is measured to be 54 mA at 25 GHz, with a corresponding output radio frequency (RF) power of up to 15.5 dBm. The saturation characteristics of the MUTC-PD are also verified by the electric field simulation, and electric field collapse is found to be the cause of the saturation phenomenon.

Keywords:  wide bandwidth      high power      uni-traveling-carrier photodiodes  
Received:  01 February 2015      Revised:  25 March 2015      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  78.55.Cr (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB315605 and 2014CB340002), the National Natural Science Foundation of China (Grant Nos. 61176015, 61176059, 61210014, 61321004, and 61307024), and the Open Fund of State Key Laboratory on Integrated Optoelectronics, China (Grant Nos. IOSKL2012KF08 and IOSKL2014KF09).

Corresponding Authors:  Xiong Bing, Luo Yi     E-mail:  bxiong@tsinghua.edu.cn;luoy@tsinghua.edu.cn

Cite this article: 

Li Jin (李进), Xiong Bing (熊兵), Sun Chang-Zheng (孙长征), Luo Yi (罗毅), Wang Jian (王健), Hao Zhi-Biao (郝智彪), Han Yan-Jun (韩彦军), Wang Lai (汪莱), Li Hong-Tao (李洪涛) Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance 2015 Chin. Phys. B 24 078503

[1] Seeds A J and Williams K J 2006 J. Lightw.Technol. 24 4628
[2] Ishibashi T, Kodama S, Shimizu N and Furuta T 1997 Jpn. J. Appl. Phys. 36 6263
[3] Li C, Xue C L, Liu Z, Cheng B W, Li C B and Wang Q M 2014 Chin. Phys. B 23 038506
[4] Li C, Xue C L, Li C B, Liu Z, Cheng B W and Wang Q M 2013 Chin. Phys. B 22 118503
[5] Li N, Li X, Demiguel S, Zheng X, Campbell J C, Tulchinsky D A, Williams K J, Isshiki T D, Kinsey G S and Sudharsansan R 2004 IEEE Photon. Technol. Lett. 16 864
[6] Shi J W, Kuo F M, Wu C J, Chang C L, Liu C Y, Chen C Y and Chyi J I 2010 IEEE J. Lightw. Technol. 46 80
[7] Wang X, Duan N, Chen H and Campbell J C 2007 IEEE Photon. Technol. Lett. 19 1272
[8] Zuo Y H, Cao Q, Zhang Y, Zhang L Z, Guo J C, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 018504
[9] Shi T, Xiong B, Sun C Z and Luo Y 2011 Chin. Opt. Lett. 9 082302
[10] Duan X F, Huang Y Q, Shang Y F, Wang J and Ren X M 2014 Opt. Lett. 39 2447
[11] Sun C Z, Zhou J, Xiong B, Wang J and Luo Y 2003 Chin.Phys. Lett. 20 1312
[12] Shi T, Xiong B, Sun C Z and Luo Y 2013 IEEE Photon. Technol. Lett. 25 136
[13] Chtioui M, Enard A, Carpentier D, Bernard S, Rousseau B, Lelarge F, Pommereau F and Achouche M 2008 IEEE Photon. Technol. Lett. 20 202
[14] Shi J W, Kuo F M, Wu C J, Chang C L, Liu C Y, Chen C Y and Chyi J I 2010 IEEE J. Quantum Electron. 46 80
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[4] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[5] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[6] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[7] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[8] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[9] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[10] High power external-cavity surface-emitting laser with front and end pump
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉). Chin. Phys. B, 2018, 27(8): 084205.
[11] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[12] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[13] Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle
Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
[14] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[15] A 12.1-W SESAM mode-locked Yb:YAG thin disk laser
Yingnan Peng(彭英楠), Zhaohua Wang(王兆华), Dehua Li(李德华), Jiangfeng Zhu(朱江峰), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(5): 054205.
No Suggested Reading articles found!