Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117301    DOI: 10.1088/1674-1056/aba2e0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode

Jia-Feng Liu(刘家丰)1,2, †, Ning-Tao Zhang(张宁涛)4, †, Yan Teng(滕)1,2, Xiu-Jun Hao(郝修军)2,3, Yu Zhao(赵宇)2, Ying Chen(陈影)1,2, He Zhu(朱赫)1,2, Hong Zhu(朱虹)1,2, Qi-Hua Wu(吴启花)2, Xin Li(李欣)2, Bai-Le Chen(陈佰乐)4,§, and Yong Huang(黄勇)1,2,, ‡
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
Abstract  

We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition. The difference between the two devices, namely, p+nn+ and p+nnn+, is that the p+nnn+ device possesses an additional middle-doped layer to separate the multiplication region from the absorption region. By properly controlling the electric field distribution in the p+nnn+ device, an electric field of 906 kV/cm has been achieved, which is 2.6 times higher than that in the p+nn+ device. At a reverse bias of –0.1 V at 77 K, both devices show a 100% cut-off wavelength of 2.25 μm. The p+nn+ and p+nnn+ show a dark current density of 1.5 × 10−7 A/cm2 and 1.8 × 10−8 A/cm2, and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5 μm, respectively. A maximum multiplication gain of 55 is achieved in the p+nnn+ device while the value is only less than 2 in the p+nn+ device. Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.

Keywords:  short-wavelength infrared      InAs/GaSb superlattice      avalanche photodiodes      metal-organic chemical vapor deposition  
Received:  13 May 2020      Revised:  19 June 2020      Accepted manuscript online:  06 July 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61874179, 61804161, and 61975121) and the National Key Research and Development Program of China (Grant No. 2019YFB2203400).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: yhuang2014@sinano.ac.cn §Corresponding author. E-mail: chenbl@shanghaitech.edu.cn   

Cite this article: 

Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇) Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode 2020 Chin. Phys. B 29 117301

Fig. 1.  

The schematic cross-section of (a) p+nn+ device and (b) p+nnn+ device. (c) Simulation of electric field distribution and intensity of corresponding two devices.

Fig. 2.  

The dark current density as a function of applied bias for the p+nn+ and p+nnn+ devices measured under 77 K.

Fig. 3.  

The comparison of (a) spectral responsivity and (b) quantum efficiency for p+nn+ and p+nnn+ devices.

Fig. 4.  

Total current with illumination, dark current, and corresponding multiplication gain vs. applied reverse bias for the (a) p+nn+ device, and (b) p+nnn+ device at 77 K.

[1]
Nguyen B M, Chen G X, Hoang M A, Razeghi M 2011 IEEE J. Quantum. Elect. 47 686 DOI: 10.1109/JQE.2010.2103049
[2]
Smith D L, Mailhiot C 1987 J. Appl. Phys. 62 2545 DOI: 10.1063/1.339468
[3]
Rogalski A, Martyniuk P 2006 Infrared. Phys. Techn. 48 39 DOI: 10.1016/j.infrared.2005.01.003
[4]
Banerjee K, Mallick S, Ghosh S, Plis E, Rodriguez J B, Krishna S, Grein C 2008 Mater. Res. Soc. Proc. 1076 1076-K02 DOI: 10.1557/PROC-1076-K02-02
[5]
Mallick S, Banerjee K, Ghosh S, Plis E, Rodriguez J B, Krishna S, Grein C 2007 Appl. Phys. Lett. 91 241111 DOI: 10.1063/1.2817608
[6]
Banerjee K, Ghosh S, Mallick S, Plis E, Krishna S, Grein C 2009 Appl. Phys. Lett. 94 201107 DOI: 10.1063/1.3139012
[7]
Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251 DOI: 10.1063/1.91089
[8]
David J P R, Tan C H 2008 IEEE J. Sel. Top. Quantum Electron. 14 998 DOI: 10.1109/JSTQE.2008.918313
[9]
Hoffman D, Nguyen B M, Delaunay P Y, Hood A, Razeghi M, Pellegrino J 2007 Appl. Phys. Lett. 91 143507 DOI: 10.1063/1.2795086
[10]
Yang Q K, Fuchs F, Schmitz J, Pletschen W 2002 Appl. Phys. Lett. 81 4757 DOI: 10.1063/1.1529306
[11]
Li X, Zhao Y, Wu Q H, Teng Y, Hao X J, Huang Y 2018 J. Cryst. Growth. 502 71 DOI: 10.1016/j.jcrysgro.2018.09.003
[12]
Chen Y, Liu J F, Zhao Y, Teng Y, Hao X J, Li X, Zhu H, Zhu H, Wu Q H, Huang Y 2020 Infrared. Phys. Techn. 105 103209 DOI: 10.1016/j.infrared.2020.103209
[13]
Kinch M A, Beck J D, Wan C F, Ma F, Campbell J 2004 J. Electron. Mater. 33 630 DOI: 10.1007/s11664-004-0058-1
[14]
Beck J, Wan C, Kinch M, Robinson J, Mitra P, Scritchfield R, Ma F, Campbell J 2006 J. Electron. Mater. 35 1166 DOI: 10.1007/s11664-006-0237-3
[15]
Ghosh S, Mallick S, Banerjee K, Grein C, Velicu S, Zhao J, Silversmith D, Rodriguez J B, Plis E, Krishna S 2008 J. Electron. Mater. 37 1764 DOI: 10.1007/s11664-008-0542-0
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[3] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[4] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[5] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[6] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[7] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[8] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[9] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(7): 078102.
[10] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming (刘建明), Zhang Jie (张洁), Lin Wen-Yu (林文禹), Ye Meng-Xin (叶孟欣), Feng Xiang-Xu (冯向旭), Zhang Dong-Yan (张东炎), Steve Ding, Xu Chen-Ke (徐宸科), Liu Bao-Lin (刘宝林). Chin. Phys. B, 2015, 24(5): 057801.
[11] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Lü You (吕游), Yang Hao-Yu (杨皓宇), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2015, 24(1): 018102.
[12] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴). Chin. Phys. B, 2014, 23(4): 047804.
[13] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying (邢海英), Xu Zhang-Cheng (徐章程), Cui Ming-Qi (崔明启), Xie Yu-Xin (谢玉芯), Zhang Guo-Yi (张国义). Chin. Phys. B, 2014, 23(10): 107803.
[14] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体). Chin. Phys. B, 2013, 22(8): 088401.
[15] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long (吕晓龙), Zhang Xia (张霞), Liu Xiao-Long (刘小龙), Yan Xin (颜鑫), Cui Jian-Gong (崔建功), Li Jun-Shuai (李军帅), Huang Yong-Qing (黄永清), Ren Xiao-Min (任晓敏). Chin. Phys. B, 2013, 22(6): 066101.
No Suggested Reading articles found!