CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate |
Xu-Long Chu(褚旭龙)1,4, Zeng Liu(刘增)1,8, Yu-Song Zhi(支钰崧)1, Yuan-Yuan Liu(刘媛媛)2,3, Shao-Hui Zhang(张少辉)5,7, Chao Wu(吴超)6, Ang Gao(高昂)1, Pei-Gang Li(李培刚)1,†, Dao-You Guo(郭道友)6, Zhen-Ping Wu(吴真平)1, and Wei-Hua Tang(唐为华)1,8,9,‡ |
1 Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 The Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 4 China Aerospace System Simulation Technology Co., Ltd. (Beijing), Beijing 100195, China; 5 Division of Interdisciplinary and Comprehensive Research & Platform for Characterization and Test, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; 6 Center for Optoelectronics Materials and Devices & Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China; 7 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; 8 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; 9 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210046, China |
|
|
Abstract We report the edge-defined-film-fed (EFG)-grown β-Ga2O3-based Schottky photodiodes. The device has a reverse leakage current of ∼nA and a rectified ratio of ∼104 at \(\mathrm\pm 5\) V. In addition, the photodiode detector shows a dark current of 0.3 pA, a photo-responsivity (R) of 2.875 mA/W, a special detectivity (D*) of 1010 Jones, and an external quantum efficiency (EQE) of 1.4% at zero bias, illustrating a self-powered operation. This work may advance the development of the Ga2O3-based Schottky diode solar-blind photodetectors.
|
Received: 22 September 2020
Revised: 15 October 2020
Accepted manuscript online: 28 October 2020
|
PACS:
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
85.25.Oj
|
(Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by BUPT Excellent Ph.D. Students Foundation (Grant No. CX2020314), the National Natural Science Foundation of China (Grant Nos. 61774019, 51572033, and 51572241), the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
†Corresponding author. E-mail: pgli@bupt.edu.cn ‡Corresponding author. E-mail: whtang@bupt.edu.cn
|
Cite this article:
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华) Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate 2021 Chin. Phys. B 30 017302
|
1 Roy R, Hill V and Osborn E 1952 J. Am. Chem. Soc. 74 719 2 Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Process. 78 132 3 Liu Z, Li P, Zhi Y, Wang X, Chu X and Tang W 2019 Chin. Phys. B 28 017105 4 Xu J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753 5 Pearton S J, Yang J, Cary I P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 6 Guo D, Guo Q, Chen Z, Wu Z, Li P and Tang W 2019 Mater. Today Phys. 11 100157 7 Liang S, Sheng H, Liu Y, Huo Z, Lu Y and Shen H 2001 J. Cryst. Growth 225 110 8 Dong L, Yu J, Jia R, Hu J, Zhang Y and Sun J 2019 Opt. Mater. Express 9 1191 9 Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lv H and Liu M 2019 IEEE Electron Device Lett. 40 1475 10 Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D and Shen D 2016 ACS Appl. Mater. Interfaces 8 4185 11 Debbar N 2016 Int. J. Numer. Model. 29 333 12 Oh S, Kim C K and Kim J 2017 ACS Photon. 5 1123 13 Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P and Tang W 2019 J. Mater. Chem. C 7 13920 14 Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P and Tang W 2020 J. Mater. Chem. C 8 5071 15 Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K and Yaguchi Y 2008 Jpn. J. Appl. Phys. 47 8506 16 Chang C Y and Sze S M 1970 Solid-State Electron. 13 727 17 Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D: Appl. Phys. 53 085105 18 He H, Orlando R, Blanco M A and Pandey R 2006 Phys. Rev. B 74 195123 19 Liu X Z, Yue C, Xia C and Zhang W L 2016 Chin. Phys. B 25 017201 20 Yang J, Xian M, Carey P, Fares C, Partain J, Ren F, Tadjer M, Anber E, Foley D, Lang A, Hart J, Nathaniel J, Taheri M L, Pearton S J and Kuramata A 2019 Appl. Phys. Lett. 114 232106 21 Yang J, Fares C, Elhassani R, Xian M, Ren F, Pearton S J, Tadjer M and Kuramataet A 2019 ECS J. Solid State Sci. Technol. 8 Q3159 22 Baliga B J 1982 J. Appl. Phys. 53 1759 23 Eastman D E 1970 Phys. Rev. B 2 1 24 Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R and Fornari R 2012 Appl. Phys. Lett. 101 132106 25 Tung R T 2014 Appl. Phys. Rev. 1 011304 26 Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y and Du G 2018 RSC Adv. 8 6341 27 Zhi Y, Liu Z, Chu X, Li S, Yan Z, Wang X, Huang Y, Wang J, Wu Z, Guo D, Li P and Tang W 2020 ECS J. Solid State Sci. Technol. 9 065011 28 Chen N, Ma J, Li P, Xu H and Liu Y 2019 Opt. Express 27 8717 29 Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665 30 Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433 31 Chen Y, Zhang K, Yang X, Chen X, Sun J, Zhao Q, Li K and Shan C 2020 J. Phys. D: Appl. Phys. 53 484001 32 Chen Y, Lu Y, Lin C, Tian Y, Gao C, Dong L and Shan C 2018 J. Mater. Chem. C 6 5727 33 Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D L and Wang Z L 2009 Appl. Phys. Lett. 94 191103 34 Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503 35 Su L, Yang W, Cai J, Chen H and Fang X 2017 Small 13 1701687 36 Chen H Y, Liu K W, Chen X, Zhang Z Z, Fan M M, Jiang M M, Xie X H, Zhao H F and Shen D Z 2014 J. Mater. Chem. C 2 9689 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|