Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088502    DOI: 10.1088/1674-1056/ab90f1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure

Ke-Xiu Dong(董可秀)1, Dun-Jun Chen(陈敦军)2, Qing Cai(蔡青)2, Yan-Li liu(刘燕丽)3, Yu-Jie Wang(王玉杰)1
1 School of Mechanical and Electrical Engineering, Chuzhou University, Chuzhou 239000, China;
2 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
3 School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
Abstract  To suppress the electric field crowding at sidewall and improve the detection sensitivity of the AlGaN separate absorption and multiplication (SAM) avalanche photodiodes (APDs), we propose the new AlGaN APDs structure combining a large-area mesa with a field plate (FP). The simulated results show that the proposed AlGaN APDs exhibit a significant increase in avalanche gain, about two orders of magnitude, compared to their counterparts without FP structure, which is attributed to the suppression of electric field crowding at sidewall of multiplication layer and the reduction of the maximum electric field at the p-type GaN sidewall in p-n depletion region. Meanwhile, the APDs can produce an obviously enhanced photocurrent due to the increase in cross sectional area of multiplication region.
Keywords:  AlGaN      avalanche photodiodes      mesa      field plate  
Received:  01 March 2020      Revised:  19 April 2020      Accepted manuscript online: 
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Project supported by the Natural Science Research Project of Anhui University, China (Grant No. KJ2019A0644), the National Natural Science Foundation of China (Grant Nos. 61634002 and 61804089), the Natural Science Alliance Foundation, China (Grant No. U1830109), the Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF149), the Chuzhou University Research Project, China (Grant No. zrjz2019002), and the Project of the Higher Educational and Technology Program of Shandong Province, China (Grant No. J16LN04).
Corresponding Authors:  Dun-Jun Chen     E-mail:  djchen@nju.edu.cn

Cite this article: 

Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰) Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure 2020 Chin. Phys. B 29 088502

[1] Cai Q, Luo W K, Li Q, Li M, Chen D J, Lu H, Zhang R and Zheng Y D 2018 Appl. Phys. Lett. 113 123503
[2] Huang Y, Chen D J, Lu H, Dong K X, Zhang R, Zheng Y D, Li L and Li Z H 2012 Appl. Phys. Lett. 101 253516
[3] Tang Y, Cai Q, Yang L H, Dong K X, Chen D J, Lu H, Zhang R and Zheng Y D 2017 Chin. Phys. B 26 038503
[4] Kizilyalli I C, Prunty T and Aktas O 2015 IEEE Electron Dev. Lett. 36 1073
[5] Reddy P, Breckenridge M H, Klump A, Guo Q, Mita S, Sarkar B, Kirste R, Moody B, Tweedie J, Collazo R and Sitar Z 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID) p. 1
[6] Pham T T T, Shin H, Chong E and Cha H Y 2018 J. Semicond. Sci. Technol. 18 645
[7] Cha H Y 2010 J. Korean Phys. Soc. 56 672
[8] Akiyama S, Kondo M, Wada L and Horio K 2019 Jpn. J. Appl. Phys. 58 068003
[9] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
[10] Wang X D, Hu W D, Pan M, Hou L W, Xie W, Xu J T, Li X Y, Chen X S and Lu W 2014 J. Appl. Phys. 115 013103
[11] Dong K X, Chen D J, Lu H, Liu B, Han P, Zhang R and Zheng Y D 2013 IEEE Photon. Technol. Lett. 25 1510
[12] Liu Y L, Wang W, Dong Y, Chen D J, Zhang R and Zheng Y D 2019 Acta Phys. Sin. 68 247203(in Chinese)
[13] McClintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
[14] Sun L, Chen J, Li J and Jiang H 2010 Appl. Phys. Lett. 97 191103
[15] Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Dev. Lett. 35 372
[16] Liu H D, Zheng X G, Zhou Q G, X G, Mcintosh D C and Campbell J C 2009 IEEE J. Quantum Elect. 45 1524
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[3] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[7] Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆). Chin. Phys. B, 2022, 31(4): 048101.
[8] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[9] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[10] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[11] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[12] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[13] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[14] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[15] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
No Suggested Reading articles found!