CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow |
Bin Li(黎斌)2,3, Shan-Jin Huang(黄善津)2, Hai-Long Wang(王海龙)2, Hua-Long Wu(吴华龙)2, Zhi-Sheng Wu(吴志盛)1, Gang Wang(王钢)1, Hao Jiang(江灏)1 |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China;
2 School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
3 The Open University of Guangdong & Guangdong Polytechnic Institute, Guangzhou 510091, China |
|
|
Abstract The performance of an InGaN/GaN multiple quantum well (MQW) based visible-light Schottky photodiode (PD) is improved by optimizing the source flow of TEGa during InGaN QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the InGaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and -3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing InGaN may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.
|
Received: 19 January 2017
Revised: 17 April 2017
Accepted manuscript online:
|
PACS:
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
Fund: Project supported by the Science and Technology Major Project of Guangdong Province, China (Grant Nos. 2014B010119003 and 2015B010112001). |
Corresponding Authors:
Hao Jiang
E-mail: stsjiang@mail.sysu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏) Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow 2017 Chin. Phys. B 26 087307
|
[1] |
Muñoz E, Monroy E, Pau J L, Calle F, Omnés F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
|
[2] |
Pantha B N, Wang H, Khan N, Lin J Y and Jiang H X 2011 Phys. Rev. B 84 075327
|
[3] |
Li S X, Yu K M, Wu J, Jones R E, Walukiewicz W, Ager J W, Shan W, Haller E E, Lu H and Schaff W J 2006 Physica B 376-377 432
|
[4] |
Chiou Y Z, Su Y K, Chang S J, Gong J, Lin Y C, Liu S H and Chang C S 2003 IEEE J. Quantum Electron. 39 681
|
[5] |
Rivera C, Pau J L, Naranjo F B and Muñoz E 2004 Phys. Status Solidi A 201 2658
|
[6] |
Rivera C, Pau J L and Muñoz E 2006 Appl. Phys. Lett. 89 263505
|
[7] |
Pereiro J, Rivera C, Navarro A and Munoz E 2009 IEEE J. Quantum Electron. 45 617
|
[8] |
Kim T K, Shim S K, Yang S S, Son J K and Hong Y K 2007 Curr. Appl. Phys. 7 469
|
[9] |
Oliver R A, Kappers M J, Humphreys C J and Briggs G A D 2004 J. Cryst. Growth 272 393
|
[10] |
Piner E L, Behbehani M K, Elmasry N A, Mcintosh F G and Roberts J C 1997 Appl. Phys. Lett. 70 461
|
[11] |
Li B, Zhang L X, Wu Z S, Wang G and Jiang H 2015 IEEE Photon. Technol. Lett. 27 2300
|
[12] |
Smeeton T M, Kappers M J, Barnard J S, Vickers M E and Humphreys C J 2003 Appl. Phys. Lett. 83 5419
|
[13] |
Keller S, Keller B P, Kapolnek D, Abare A C and Masui H 1996 Appl. Phys. Lett. 68 3147
|
[14] |
Song S W, Liu Y, Liang H W, Xia X C and Zhang K X 2013 Chin. J. Lumin. 34 744
|
[15] |
Bayram C and Razeghi M 2009 J. Vac. Sci. Technol. B 27 1784
|
[16] |
Pan Z, Wang Y T, Zhuang Y, Lin Y W and Zhou Z Q 1999 Appl. Phys. Lett. 75 223
|
[17] |
Chichibu S F, Abare A C, Mack M P, Minsky M S and Deguchi T 1999 Mater. Sci. Eng. B 59 298
|
[18] |
Lin Y S, Ma K J, Hsu C, Feng S W and Cheng Y C 2000 Appl. Phys. Lett. 77 2988
|
[19] |
Lai Y L, Liu C P and Chen Z Q 2005 Appl. Phys. Lett. 86 121915
|
[20] |
Watanabe S, Yamada N, Nagashima M, Ueki Y and Sasaki C 2003 Appl. Phys. Lett. 83 4906
|
[21] |
Dai Q, Schubert M F, Kim M H and Kim J K 2009 Conference on Lasers & Electro-optics 94 111109
|
[22] |
Wang Y, Pei X J, Xing Z G, Guo L W and Jia H Q 2007 J. Appl. Phys. 101 033509
|
[23] |
Bimberg D, Sondergeld M and Grobe E 1971 Phys. Rev. B 4 3451
|
[24] |
Meneghini M, Tazzoli A, Butendeich R, Hahn B, Meneghesso G and Zanoni E 2010 IEEE Electron Dev. Lett. 31 579
|
[25] |
Chen D J, Huang Y, Liu B, Xie Z L, Zhang R, Zheng Y D, Wei Y and Narayanamurti V 2009 J. Appl. Phys. 105 063714
|
[26] |
Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
|
[27] |
Han D P, Oh C H, Kim H, Shim J I, Kim K S and Shin D S 2015 IEEE Trans. Electron Dev. 62 587
|
[28] |
Rivera C, Pau J L, Pereiro J and Muñoz E 2004 Superlattices and Microstructures 36 849
|
[29] |
Jiang H, Nakata N, Zhao G Y, Ishikawa H, Shao C L, Egawa T, Jimbo T and Umeno M 2001 Jpn. J. Appl. Phys. 40 L505
|
[30] |
Klingenstein M, Kuhl J, Rosenzweig J, Moglestue C, Hulsmann A, Schneider J and Kohler K 1994 Solid State Electron. 37 333
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|