Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087307    DOI: 10.1088/1674-1056/26/8/087307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow

Bin Li(黎斌)2,3, Shan-Jin Huang(黄善津)2, Hai-Long Wang(王海龙)2, Hua-Long Wu(吴华龙)2, Zhi-Sheng Wu(吴志盛)1, Gang Wang(王钢)1, Hao Jiang(江灏)1
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China;
2 School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
3 The Open University of Guangdong & Guangdong Polytechnic Institute, Guangzhou 510091, China
Abstract  

The performance of an InGaN/GaN multiple quantum well (MQW) based visible-light Schottky photodiode (PD) is improved by optimizing the source flow of TEGa during InGaN QW growth. The samples with five-pair InGaN/GaN MQWs are grown on sapphire substrates by metal organic chemical vapor deposition. From the fabricated Schottky-barrier PDs, it is found that the smaller the TEGa flow, the lower the reverse-bias leakage is. The photocurrent can also be enhanced by depositing the InGaN QWs with using lower TEGa flow. A high responsivity of 1.94 A/W is obtained at 470 nm and -3-V bias in the PD grown with optimized TEGa flow. Analysis results show that the lower TEGa flow used for depositing InGaN may lead to superior crystalline quality with improved InGaN/GaN interface, and less structural defects related non-radiative recombination centers formed in the MQWs.

Keywords:  visible-light photodiodes      quantum wells      triethylgallium      oxidized iridium  
Received:  19 January 2017      Revised:  17 April 2017      Accepted manuscript online: 
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.61.Ey (III-V semiconductors)  
  78.66.Fd (III-V semiconductors)  
Fund: 

Project supported by the Science and Technology Major Project of Guangdong Province, China (Grant Nos. 2014B010119003 and 2015B010112001).

Corresponding Authors:  Hao Jiang     E-mail:  stsjiang@mail.sysu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Bin Li(黎斌), Shan-Jin Huang(黄善津), Hai-Long Wang(王海龙), Hua-Long Wu(吴华龙), Zhi-Sheng Wu(吴志盛), Gang Wang(王钢), Hao Jiang(江灏) Performance improvement of InGaN/GaN multiple quantum well visible-light photodiodes by optimizing TEGa flow 2017 Chin. Phys. B 26 087307

[1] Muñoz E, Monroy E, Pau J L, Calle F, Omnés F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
[2] Pantha B N, Wang H, Khan N, Lin J Y and Jiang H X 2011 Phys. Rev. B 84 075327
[3] Li S X, Yu K M, Wu J, Jones R E, Walukiewicz W, Ager J W, Shan W, Haller E E, Lu H and Schaff W J 2006 Physica B 376-377 432
[4] Chiou Y Z, Su Y K, Chang S J, Gong J, Lin Y C, Liu S H and Chang C S 2003 IEEE J. Quantum Electron. 39 681
[5] Rivera C, Pau J L, Naranjo F B and Muñoz E 2004 Phys. Status Solidi A 201 2658
[6] Rivera C, Pau J L and Muñoz E 2006 Appl. Phys. Lett. 89 263505
[7] Pereiro J, Rivera C, Navarro A and Munoz E 2009 IEEE J. Quantum Electron. 45 617
[8] Kim T K, Shim S K, Yang S S, Son J K and Hong Y K 2007 Curr. Appl. Phys. 7 469
[9] Oliver R A, Kappers M J, Humphreys C J and Briggs G A D 2004 J. Cryst. Growth 272 393
[10] Piner E L, Behbehani M K, Elmasry N A, Mcintosh F G and Roberts J C 1997 Appl. Phys. Lett. 70 461
[11] Li B, Zhang L X, Wu Z S, Wang G and Jiang H 2015 IEEE Photon. Technol. Lett. 27 2300
[12] Smeeton T M, Kappers M J, Barnard J S, Vickers M E and Humphreys C J 2003 Appl. Phys. Lett. 83 5419
[13] Keller S, Keller B P, Kapolnek D, Abare A C and Masui H 1996 Appl. Phys. Lett. 68 3147
[14] Song S W, Liu Y, Liang H W, Xia X C and Zhang K X 2013 Chin. J. Lumin. 34 744
[15] Bayram C and Razeghi M 2009 J. Vac. Sci. Technol. B 27 1784
[16] Pan Z, Wang Y T, Zhuang Y, Lin Y W and Zhou Z Q 1999 Appl. Phys. Lett. 75 223
[17] Chichibu S F, Abare A C, Mack M P, Minsky M S and Deguchi T 1999 Mater. Sci. Eng. B 59 298
[18] Lin Y S, Ma K J, Hsu C, Feng S W and Cheng Y C 2000 Appl. Phys. Lett. 77 2988
[19] Lai Y L, Liu C P and Chen Z Q 2005 Appl. Phys. Lett. 86 121915
[20] Watanabe S, Yamada N, Nagashima M, Ueki Y and Sasaki C 2003 Appl. Phys. Lett. 83 4906
[21] Dai Q, Schubert M F, Kim M H and Kim J K 2009 Conference on Lasers & Electro-optics 94 111109
[22] Wang Y, Pei X J, Xing Z G, Guo L W and Jia H Q 2007 J. Appl. Phys. 101 033509
[23] Bimberg D, Sondergeld M and Grobe E 1971 Phys. Rev. B 4 3451
[24] Meneghini M, Tazzoli A, Butendeich R, Hahn B, Meneghesso G and Zanoni E 2010 IEEE Electron Dev. Lett. 31 579
[25] Chen D J, Huang Y, Liu B, Xie Z L, Zhang R, Zheng Y D, Wei Y and Narayanamurti V 2009 J. Appl. Phys. 105 063714
[26] Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
[27] Han D P, Oh C H, Kim H, Shim J I, Kim K S and Shin D S 2015 IEEE Trans. Electron Dev. 62 587
[28] Rivera C, Pau J L, Pereiro J and Muñoz E 2004 Superlattices and Microstructures 36 849
[29] Jiang H, Nakata N, Zhao G Y, Ishikawa H, Shao C L, Egawa T, Jimbo T and Umeno M 2001 Jpn. J. Appl. Phys. 40 L505
[30] Klingenstein M, Kuhl J, Rosenzweig J, Moglestue C, Hulsmann A, Schneider J and Kohler K 1994 Solid State Electron. 37 333
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[3] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[4] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[5] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[6] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[7] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[8] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
[9] Analysis of localization effect in blue-violet light emitting InGaN/GaN multiple quantum wells with different well widths
Xiang Li(李翔), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Feng Liang(梁锋), Jian-Ping Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同), Heng Long(龙衡), Mo Li(李沫). Chin. Phys. B, 2017, 26(1): 017805.
[10] Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells
E Ben Salem, R Chaabani, S Jaziri. Chin. Phys. B, 2016, 25(9): 098101.
[11] Exciton-phonon interaction in Al0.4Ga0.6N/Al0.53Ga0.47N multiple quantum wells
Ya-Li Liu(刘雅丽), Peng Jin(金鹏), Gui-Peng Liu(刘贵鹏), Wei-Ying Wang(王维颖), Zhi-Qiang Qi(齐志强), Chang-Qing Chen(陈长清), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 087801.
[12] Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well
Wei-Min Zheng(郑卫民), Su-Mei Li(李素梅), Wei-Yan Cong(丛伟艳), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2016, 25(4): 047302.
[13] Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction
Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Yang Jiang(江洋), Lu Wang(王禄), Haojun Yang(杨浩军), Yangfeng Li(李阳锋), Peng Zuo(左朋), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Junming Zhou(周钧铭), Wuming Liu(刘伍明), Hong Chen(陈弘). Chin. Phys. B, 2016, 25(11): 117803.
[14] Control over hysteresis curves and thresholds of optical bistability in different semiconductor double quantum wells
Hamedi H R, Mehmannavaz M R, Afshari Hadi. Chin. Phys. B, 2015, 24(8): 084211.
[15] Influences of excitation power and temperature on photoluminescence in phase-separated InGaN quantum wells
Wang Qiang (王强), Ji Zi-Wu (冀子武), Wang Fan (王帆), Mu Qi (牟奇), Zheng Yu-Jun (郑雨军), Xu Xian-Gang (徐现刚), Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红). Chin. Phys. B, 2015, 24(2): 024219.
No Suggested Reading articles found!