Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048501    DOI: 10.1088/1674-1056/27/4/048501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Scalability of dark current in silicon PIN photodiode

Ya-Jie Feng(丰亚洁)1,2, Chong Li(李冲)2, Qiao-Li Liu(刘巧莉)2, Hua-Qiang Wang(王华强)2, An-Qi Hu(胡安琪)1, Xiao-Ying He(何晓颖)2, Xia Guo(郭霞)1
1. School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing 100876, China;
2. Department of Information, Beijing University of Technology, Beijing 100124, China
Abstract  The mechanism for electrical conduction is investigated by the dark temperature-dependent current-voltage characteristics of Si PIN photodiodes with different photosensitive areas. The characteristic tunneling energy E00 can be obtained to be 1.40 meV, 1.53 meV, 1.74 meV, 1.87 meV, and 2.01 meV, respectively, for the photodiodes with L=0.25 mm, 0.5 mm, 1 mm, 1.5 mm, and 2 mm by fitting the ideality factor n versus temperature curves according to the tunneling-enhanced recombination mechanism. The trap-assisted tunneling-enhanced recombination in the i-layer plays an important role in our device, which is consistent with the experimental result that area-dependent leakage current is dominant with the side length larger than 1 mm of the photosensitive area. Our results reveal that the quality of the bulk material plays an important role in the electrical conduction mechanism of the devices with the side length larger than 1 mm of the photosensitive area.
Keywords:  silicon PIN photodiodes      dark current      tunneling enhanced  
Received:  31 July 2017      Revised:  11 January 2018      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFF0104801) and the National Natural Science Foundation of China (Grant Nos. 61335004, 61675046, and 61505003).
Corresponding Authors:  Xiao-Ying He, Xia Guo     E-mail:  xyhe@bjut.edu.cn;guox@bupt.edu.cn

Cite this article: 

Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞) Scalability of dark current in silicon PIN photodiode 2018 Chin. Phys. B 27 048501

[1] Jiang J, Xu Z, Lin J and Liu G L 2016 J. Sensors 2016 1
[2] Guo X, Liu Q, Zhou H, Luan X, Li C, Hu Z, Hu A and He X 2017 IEEE Electron Dev. Lett. 39 228
[3] Nazififard M, Suh K Y and Mahmoudieh A 2016 Rev. Sci. Instrum. 87 073502
[4] Bao C, Chen Z, Fang Y, Wei H, Deng Y, Xiao X, Li L and Huang J 2017 Adv. Mater. 29 1703209
[5] Sze S M and Ng K K 2006 Physics of Semiconductor Devices 3rd edn. (John Wiley & Sons:John Wiley & Sons) p. 97
[6] Arch J and Fonash S 1992 Appl. Phys. Lett. 60 757
[7] Hegedus S S, Salzman N and Fagen E 1988 J. Appl. Phys. 63 5126
[8] Murakami Y, Satoh Y, Furuya H and Shingyouji T 1998 J. Appl. Phys. 84 3175
[9] Poyai A, Simoen E, Claeys C and Czerwinski A 2000 Mater. Sci. Eng. B 73 191
[10] Li T, Wang Y, Li Y F, Tang H J, Li X and Gong H M 2010 J. Optoelectron. Laser 21 500
[11] Chen F P, Zhang Y M, Zhang Y M, Tang X Y, Wang Y H and Chen W H 2011 Chin. Phys. B 20 117301
[12] Chen F P, Zhang Y M, Lv H L, Zhang Y M and Huang J H 2010 Chin. Phys. B 19 097107
[13] Nadenau V, Rau U, Jasenek A and Schock H W 2000 J. Appl. Phys. 87 584
[14] Guo X, Feng Y, Liu Q, Wang H, Li C, Hu Z and He X 2017 IEEE J. Electron Dev. Soc. 5 390
[15] Loukianova N V, Folkerts H O, Maas J P, Verbugt D W, Mierop A J, Hoekstra W, Roks E and Theuwissen A J 2003 IEEE Trans. Electron Dev. 50 77
[16] Dalapati P, Manik N B and Basu A N 2014 J. Semicond. 35 082001
[17] Dalapati P, Manik N B and Basu A N 2015 Cryogenic. 65 10
[18] Sellai A 2008 ICSE 2008 IEEE International Conference, Johor Bahru, November 2008, Malaysia, p. 267
[19] Pattabi M, Krishnan S and Sanjeev G 2007 Sol. Energy Mater. Sol. Cells 91 1521
[20] Padovani F and Stratton R 1966 Solid-State Electron. 9 695
[21] Zhong J, Yao Y, Zheng Y, Yang F, Ni Y Q, He Z Y, Shen Z, Zhou G L, Zhou D Q, Wu Z S, Zhang B J and Liu Y 2015 Chin. Phys. B 24 097303
[1] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[2] Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor
Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗). Chin. Phys. B, 2018, 27(10): 104207.
[3] Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors
Lindong Ma(马林东), Yudong Li(李豫东), Qi Guo(郭旗), Lin Wen(文林), Dong Zhou(周东), Jie Feng(冯婕), Yuan Liu(刘元), Junzhe Zeng(曾骏哲), Xiang Zhang(张翔), Tianhui Wang(王田珲). Chin. Phys. B, 2017, 26(11): 114212.
No Suggested Reading articles found!