Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058201    DOI: 10.1088/1674-1056/21/5/058201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The light-enhanced NO2 sensing properties of porous silicon gas sensors at room temperature

Chen Hui-Qing(陈慧卿), Hu Ming(胡明), Zeng Jing(曾晶), and Wang Wei-Dan(王巍丹)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  The NO2 gas sensing behavior of porous silicon (PS) is studied at room temperature with and without ultraviolet (UV) light radiation. The PS layer is fabricated by electrochemical etching in an HF-based solution on a p+-type silicon substrate. Then, Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor. The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature. The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response--recovery characteristics than NO2 under the illumination. The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation, while it is 2.4 without UV light radiation. We find that the ability to absorb UV light is enhanced with the increase in porosity. The PS sample with the highest porosity has a larger change than the other samples. Therefore, the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.
Keywords:  gas sensor      ultraviolet radiation      porous silicon      porosity  
Received:  10 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  82.47.Rs (Electrochemical sensors)  
  73.61.Cw (Elemental semiconductors)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018) and the Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300)

Cite this article: 

Chen Hui-Qing(陈慧卿), Hu Ming(胡明), Zeng Jing(曾晶), and Wang Wei-Dan(王巍丹) The light-enhanced NO2 sensing properties of porous silicon gas sensors at room temperature 2012 Chin. Phys. B 21 058201

[1] Eranna G, Joshi B C, Runthala D P and Gupta R P 2004 Critical Reviews in Solid State and Materials Sciences 29 111
[2] Rava M, Verlato G and Bono R 2007 Science of the Total Environment 384 163
[3] Boarino L, Baratto C, Geobaldo F, Amato G, Comini E, Rossi A M, Faglia G, Lerondel G and Sberveglieri G 2000 Materials Science and Engineering B 69--70 210
[4] Ozdemir S and Gole J L 2007 Current Opinion in Solid State and Materials Science 11 92
[5] Sun F Y, Hu M, Sun P, Zhang J and Liu B 2010 J. Nanosci. Nanotechnol. 10 1
[6] Barillaro G, Nannini A and Pieri F 2003 Sens. Actuators B 93 263
[7] Xu L J, Hu M, Yang H B, Yang M L and Zhang J 2010 Acta Phys. Sin. 59 8794 (in Chinese)
[8] Comini E, Faglia G and Sberveglieri G 2001 Sens. Actuators B 78 73
[9] Anothainart K, Burgmair M, Karthigeyan A, Zimmer M and Eisele I 2003 Sens. Actuators B 93 580
[10] Haridas D, Chowdhuri A, Sreenivas K and Gupta V 2011 Sens. Actuators B 153 152
[11] Lacy C, Ewen R J, Ratcliffe N M and Richards M 2008 Sens. Actuators B 134 945
[12] Zhai J L, Wang D J, Liang P, Lin Y H, Li X Y and Xie T F 2010 Sens. Actuators B 147 234
[13] Yang M, Wang D, Liang P, Xie T F and Zhao Y 2006 Nanotechnology 17 4567
[14] Yang T, Lin H, Wei B, Wu C and Lin C 2003 Rev. Adv. Mater. Sci. 4 48
[15] Li S, Li F L, Zhou S M, Wang P, Cheng K and Du Z L 2009 Chin. Phys. B 18 3985
[16] Hu M, Wang W D, Zeng J and Qin Y X 2011 Chin. Phys. B 20 102101
[17] Liang P, Zhai J L, Wang D J, Zhang Y, Wang P, Zhao Q D and Xie T F 2010 Sens. Actuators B 66 148
[18] Francia G Di and Citarella A 1995 J. Appl. Phys. 77 3549
[19] Han C H, Hong D W, Han S D, Gwak J and Krishan C 2007 Sens. Actuator B 125 224
[20] Yamazoe N 2005 Sens. Actuators B 108 2
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[3] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[6] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[7] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[8] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[9] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[12] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[13] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[14] Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods
Wen-Jun Yan(闫文君), Ming Hu(胡明), Ji-Ran Liang(梁继然), Deng-Feng Wang(王登峰), Yu-Long Wei(魏玉龙), Yu-Xiang Qin(秦玉香). Chin. Phys. B, 2016, 25(4): 040702.
[15] Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process
Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳). Chin. Phys. B, 2016, 25(2): 027307.
No Suggested Reading articles found!