Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047204    DOI: 10.1088/1674-1056/27/4/047204
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te

Xiaoman Shi(史晓曼)1, Guoyu Wang(王国玉)2,3, Ruifeng Wang(王瑞峰)2,3, Xiaoyuan Zhou(周小元)4, Jingtao Xu(徐静涛)5, Jun Tang(唐军)1,6, Ran Ang(昂然)1,6
1. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
3. University of Chinese Academy of Sciences, Beijing 100190, China;
4. College of Physics, Chongqing University, Chongqing 401331, China;
5. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
6. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Abstract  Binary Cu-based chalcogenide thermoelectric materials have attracted a great deal of attention due to their outstanding physical properties and fascinating phase sequence. However, the relatively low figure of merit zT restricts their practical applications in power generation. A general approach to enhancing zT value is to produce nanostructured grains, while one disadvantage of such a method is the expansion of grain size in heating-up process. Here, we report a prominent improvement of zT in Cu2Te0.2Se0.8, which is several times larger than that of the matrix. This significant enhancement in thermoelectric performance is attributed to the formation of abundant porosity via cold press. These pores with nano-to micrometer size can manipulate phonon transport simultaneously, resulting in an apparent suppression of thermal conductivity. Moreover, the Se substitution triggers a rapid promotion of power factor, which compensates for the reduction of electrical properties due to carriers scattering by pores. Our strategy of porosity engineering by phonon scattering can also be highly applicable in enhancing the performances of other thermoelectric systems.
Keywords:  thermoelectrics      Cu2Te      porosity      thermal conductivity  
Received:  19 December 2017      Revised:  05 February 2018      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  68.35.bg (Semiconductors)  
  44.10.+i (Heat conduction)  
  44.30.+v (Heat flow in porous media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771126 and 11774247), the Youth Foundation of Science and Technology Department of Sichuan Province, China (Grant No. 2016JQ0051), Sichuan University Outstanding Young Scholars Research Funding (Grant No. 2015SCU04A20), the World First-Class University Construction Funding, and the Fundamental and Frontier Research Project in Chongqing (Grant No. CSTC2015JCYJBX0026).
Corresponding Authors:  Jun Tang, Ran Ang     E-mail:  rang@scu.edu.cn;tangjun@scu.edu.cn

Cite this article: 

Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然) Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te 2018 Chin. Phys. B 27 047204

[1] He J, Kanatzidis M G and Dravid V P 2013 Mater. Today 16 166
[2] Bell L E 2008 Science 321 1457
[3] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[4] Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X and Zhu T 2015 Nat. Commun. 6 8144
[5] Cao B, Jian J, Ge B, Li S, Wang H, Liu J and Zhao H 2017 Chin. Phys. B 26 017202
[6] Song K, Song H P and Gao C F 2017 Chin. Phys. B 26 127307
[7] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[8] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[9] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[10] He J and Tritt T M 2017 Science 357 eaak9997
[11] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder J G and Pei Y 2017 Nat. Commun. 8 13828
[12] Shuai J, Mao J, Song S, Zhu Q, Sun J, Wang Y, He R, Zhou J, Chen G, Singh D J and Ren Z 2017 Energy Environ. Sci. 10 799
[13] Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B and Xie Y 2015 J. Am. Chem. Soc. 137 6587
[14] Sun X, Guo Y, Wu C and Xie Y 2015 Adv. Mater. 27 3850
[15] Tan G, Zheng Y and Tang X 2013 Appl. Phys. Lett. 103 183904
[16] Tan G, Liu W, Wang S, Yan Y, Li H, Tang X and Uher C 2013 J. Mater. Chem. A 1 12657
[17] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder J G 2012 Nat. Mater. 11 422
[18] Zhang Q, Chere E K, Sun J, Cao F, Dahal K, Chen S, Chen G and Ren Z 2015 Adv. Energy Mater. 5 1500360
[19] Wang H, Schechtel E, Pei Y and Snyder J G 2012 Adv. Energy Mater. 3 488
[20] Pei Y, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder J G 2014 Adv. Energy Mater. 4 1400486
[21] Ahmad S, Mahanti S D, Hoang K and Kanatzidis M G 2006 Phys. Rev. B 74 155205
[22] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder J G 2008 Science 321 554
[23] Pei Y, Sun X, LaLonde A D, Wang H, Chen L and Snyder J G 2011 Nature 473 66
[24] Wang H, Pei Y, LaLonde A D and Snyder J G 2011 Adv. Mater. 23 1366
[25] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 211
[26] Girard S N, He J, Zhou X, Shoemaker D, Jaworski C M, Uher C, Dravid V P, Heremans J P and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 16588
[27] Lan Y, Minnich A J, Chen G and Z. Ren 2010 Adv. Funct. Mater. 20 357
[28] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S and Lee Y H 2015 Science 348 109
[29] Uher C 2016 Materials Aspect of Thermoelectricity (Boca Raton:CRC Press)
[30] Vouroutzis N, Frangis N and Manolikas C 2005 Phys. Stat. Sol. (a) 202 1862
[31] Ballikaya S, Chi H, Salvador J R and Uher C 2013 J. Mater. Chem. A 1 12478
[32] He Y, Zhang T, Shi X, Wei S H and Chen L 2015 NPG Asia Materials 7 e210
[33] Khan A U, Kobayashi K, Tang D, Yamauchi Y, Hasegawa K, Mitome M, Xue Y, Jiang B, Tsuchiya K, Golberg D, Bando Y and Mori Y 2017 Nano Energy 31 152
[34] Fitsul V I 1969 Heavily Doped Semiconductors (New York:Plenum Press)
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!