Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058401    DOI: 10.1088/1674-1056/21/5/058401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers

Chen Ye(陈晔)a)b)†, Zhao Ding(赵鼎)a), Wang Yong(王勇)a), and Shu Wen(舒雯)a)b)
a. Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
b. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The hybrid-mode dispersion equation of the metal-grating periodic slow-wave structure for a rectangular Cerenkov maser is derived by using the Borgnis function and field-matching methods. An equivalent-circuit model for the taper of the groove depth that matches the smooth waveguide to the metal-grating structure is proposed. By using the equivalent-circuit method, as well as the Ansoft high frequency structure simulator (HFSS) code, an appropriate electromagnetic mode for beam-wave interaction is selected and the equivalent-circuit analysis on the taper is given. The calculated results show that a cumulative reflection coefficient of 0.025 for the beam-wave interaction structure at a working frequency of 78.1 GHz can be reached by designing the exponential taper with a TEz10 rectangular waveguide mode as the input and the desired TEx10 mode as the output. It is worth pointing out that by using the equivalent-circuit method, the complex field-matching problems from the traditional field-theory method for taper design can be avoided, so the taper analysis process is markedly simplified.
Keywords:  rectangular Cerenkov maser      Borgnis function method      equivalent-circuit method      HFSS      taper  
Received:  27 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
  94.05.Pt (Wave/wave, wave/particle interactions)  
  41.60.Bq (Cherenkov radiation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60801031).

Cite this article: 

Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers 2012 Chin. Phys. B 21 058401

[1] McVey B D, Basten M A, Booske J H, Joe J and Scharer J E 1994 IEEE Trans. Microwave Theory Tech. 42 995
[2] Sheng-Fuh R C, Scharer J E, and Booske J H 1992 IEEE Trans. Plasma Sci. 20 293
[3] Zhao D, Ding Y, Wang Y and Ruan C J 2010 Phys. Plasmas 17 113110
[4] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[5] Latsas G P, Moraitou M D, Ioannidis Z C and Tigelis I G 2010 IEEE Trans. Plasma Sci. 38 1185
[6] Chaudhury A, Panda P C and Srivastava V 2011 Proceedings of IEEE International Vacuum Electronics Conference, Bangalore, February 21--24, 2011 p. 63
[7] Wu Y, Xu Z, Xu Y, Jin X, Chang A B, Li Z H, Huang H, Liu Z, Luo X, Ma Q S and Tang C X 2011 Acta Phys. Sin. 60 196 (in Chinese)
[8] Shlapakovskii A S 1996 Proc. SPIE 2843 137
[9] Chen Y, Zhao D and Wang Y 2011 Chin. Phys. B 20 108402
[10] GongY B, Lu Z G, Wang G J, Wei Y Y, Huang M Z and Wang W X 2006 J. Infrared Millim. Waves 25 173 (in Chinese)
[11] Lu Z G, Wei Y Y, Gong Y B and Wang W X 2006 J. Infrared Millim. W. 25 349 (in Chinese)
[12] Hu Y L, Yang Z H, Li B, Li J Q, Huang T, Jin X L, Zhu X F and Liang X P 2010 Acta Phys. Sin. 59 5439 (in Chinese)
[13] Peng W F, Hu Y L, Yang Z H, Li J Q, Lu Q R and Li B 2010 Acta Phys. Sin. 59 8478 (in Chinese)
[14] Tang K S, Zhao G, Li S and Yin H J 2009 J. Electronics Information Technology 31 736 (in Chinese)
[15] Jiao C Q and Luo J R 2007 J. Electronics Information Technology 29 2010 (in Chinese)
[16] Zhang K and Li D 2001 Electromagnetic Theory for Microwaves and Optoelectronics 1st ed (Beijing:Electronics Industry Press) (in Chinese)
[17] David M Pozar 2006 Microwave Engineering (Beijing:Publishing House of Electronics Industry) (in Chinese)
[18] Collin R E 1981 Foundation of Microwave Engineering (Beijing:Posts and Telecommunications Press) (in Chinese)
[1] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[2] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[3] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[4] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[5] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[6] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[7] Switchable multi-wavelength fiber laser based on modal interference
Ma Lin (马林), Sun Jiang (孙将), Qi Yan-Hui (齐艳辉), Kang Ze-Xin (康泽新), Jian Shui-Sheng (简水生). Chin. Phys. B, 2015, 24(8): 084201.
[8] All-fiber modal interferometer based on an up-taper-core-offset structure for curvature sensing
Ma Lin (马林), Qi Yan-Hui (齐艳辉), Sun Jiang (孙将), Kang Ze-Xin (康泽新), Jian Shui-Sheng (简水生). Chin. Phys. B, 2015, 24(4): 044202.
[9] A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
Qi Pei-Han (齐佩汉), Li Zan (李赞), Si Jiang-Bo (司江勃), Xiong Tian-Yi (熊天意). Chin. Phys. B, 2015, 24(4): 048401.
[10] Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam
Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声). Chin. Phys. B, 2012, 21(10): 104103.
[11] Nonlinear time-dependent simulation of helix traveling wave tubes
Peng Wei-Feng(彭维峰), Yang Zhong-Hai(杨中海), Hu Yu-Lu(胡玉禄), Li Jian-Qing(李建清), Lu Qi-Ru(陆麒如), and Li Bin(李斌). Chin. Phys. B, 2011, 20(7): 078401.
[12] Simulation of dielectric resonator for high-Tc radio frequency superconducting quantum interference device
Gao Ji(高吉), Yang Tao(杨涛), Ma Ping(马平), and Dai Yuan-Dong(戴远东). Chin. Phys. B, 2010, 19(6): 067402.
[13] Study on tapered crossed subwavelength gratings by Fourier modal method
Chen Xi(陈熙), Zhong Yuan(钟源), Wang Qing(王青), Zhang Ye-Jin(张冶金), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2010, 19(10): 104101.
[14] Study on pulse compression in tapered holey fibres
Ma Wen-Wen(马文文), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(10): 104208.
[15] Electromagnetic scattering from two-layer rough interfaces in the Kirchhoff approximation
Wang Rui(王蕊), Guo Li-Xin(郭立新), and Ma Jun(麻军). Chin. Phys. B, 2009, 18(8): 3422-3430.
No Suggested Reading articles found!