ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition |
Xu Wang(王旭)1, Jue Wang(王珏)1, Tao Ma(马涛)1,2,†, Heng Liu(刘恒)1,3, and Fang Wang(王芳)1,2 |
1 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China; 2 Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China; 3 Academician Workstation of Electromagnetic Wave Engineering of Henan Province, Xinxiang 453007, China |
|
|
Abstract We investigate a graphene-coated nanowire waveguide (GCNW) composed of two suspended wedge porous silicon nanowires and a thin Ag partition. The plasmonic characteristics of the proposed structure in terahertz (THz) frequency band are simulated by the finite element method (FEM). The parameters including the gap between the nanowires and Ag partition, the height of the nanowire, the thickness of the Ag partition, and the Fermi level of graphene, are optimized. The simulation results show that a normalized mode field area of ∼ 10 -4 and a figure of merit of ∼ 100 can be achieved. Compared with the cylindrical GCNW and isolated GCNW, the proposed wedge GCNW has good electric field enhancement. A waveguide sensitivity of 32.28 is obtained, which indicates the prospects of application in refractive index (RI) sensing in THz frequency band. Due to the adjustable plasmonic characteristics by changing the Fermi level (E F), the proposed structure has promising applications in the electro-optic modulations, optical interconnects, and optical switches.
|
Received: 01 June 2020
Revised: 12 August 2020
Accepted manuscript online: 09 September 2020
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61627818), the Key Project of Henan Provincial Education Department, China (Grant No. 19A510002), the Natural Science Project of the Cultivation Foundation of Henan Provincial Normal University, China (Grant No. 2017PL04), and the Ph. D. Program of Henan Normal University, China (Grant Nos. 5101239170010 and gd17167). |
Corresponding Authors:
†Corresponding author. E-mail: matao@htu.edu.cn
|
Cite this article:
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳) Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition 2021 Chin. Phys. B 30 014207
|
1 Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206 2 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 3 Liu X J, Yang L W, Ma J Y, Li C L, Jin W and Bi W H 2018 Chin. Phys. B 27 104206 4 Fu G W, Wang Y, Wang B L, Yang K L, Wang X Y, Fu X H, Jin W and Bi W H 2020 Chin. Phys. B 29 34209 5 Hu D J, Lim J L, Jiang M, Wang Y, Luan F, Shum P P, Wei H and Tong W 2012 Opt. Lett. 37 2283 6 Zhu B, Ren G, Cryan M J, Gao Y, Yang Y, Wu B, Lian Y and Jian S 2015 Opt. Mater. Express 5 2174 7 Lu W 2016 Appl. Opt. 55 5095 8 Zhang Z Q, Jia Y X, Guo X F, Ge D H, Cheng G G and Ding J N 2018 Acta Phys. Sin. 67 033101 (in Chinese) 9 Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801 10 Zhang H J, Zheng G G, Cheng Y Y, Zou X J and Xu L H 2018 Chin. Phys. Lett. 35 038102 11 Cen G, Zhang Z B, Lv X Y, Liu K H and Li Z Q 2020 Acta Phys. Sin. 69 027803 (in Chinese) 12 Cheng X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 77803 13 Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93 14 Cen C, Lin H, Liang C, Huang J, Chen X, Yi Z, Tang Y, Duan T, Xu X, Xiao S and Yi Y 2018 Superlattices and Microstructures 120 427 15 Chen J, Zeng Y, Xu X, Chen X, Zhou Z, Shi P, Yi Z, Ye X, Xiao S and Yi Y 2018 Nanomaterials 8 175 16 He S, Zhang X and He Y 2013 Opt. Express 21 30664 17 Xiao B, Qin K, Xiao S and Han Z 2015 Opt. Commun. 355 602 18 Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S and Qin S Q 2015 Opt. Express 23 5147 19 Ye S, Wang Z, Tang L, Zhang Y, Lu R and Liu Y 2014 Opt. Express 22 26173 20 Qi L and Liu C 2019 Opt. Mater. Express 9 1298 21 Tassin P, Koschny T, Kafesaki M and Soukoulis C M 2012 Nat. Photon. 6 259 22 Yuan Y, Yao J and Xu W 2012 Opt. Lett. 37 960 23 Teng D, Wang K, Li Z, Zhao Y, Zhao G, Li H and Wang H 2019 Appl. Sci. 9 2351 24 Liu J P, Zhai X, Xie F, Wang L L, Xia S X, Li H J, Luo X and Shang X J 2017 J. Lightwave Technol. 35 1971 25 Mbonye M, Mendis R and Mittleman D M 2009 Appl. Phys.s Lett. 95 233506 26 Hajati M and Hajati Y 2016 J. Opt. Soc. Am. B 33 2560 27 Hajati M and Hajati Y 2017 Appl. Opt. 56 870 28 Charrier J, Lupi C, Haji L and Boisrobert C 2000 Mater. Sci. Semicond. Process. 3 357 29 Hwang K W and Park S H 2015 Material Research Innovations 19 S8-549 30 Zhang H, Jie L and Jia Z 2018 Sensors 18 105 31 Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovc\'ík L and Salamakha M Y 2019 Molecular Crystals and Liquid Crystals 673 32 32 Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M and Charrier J 2017 Opt. Mater. 72 596 33 Jiao L S, Liu J Y, Li H Y, Wu T S, Li F, Wang H Y and Niu L 2016 J. Power Sources 315 9 34 Shin D H, Kim J H, Kim J H, Jang C W, Seo S W, Lee H S, Kim S and Choi S H 2017 J. Alloys Compd. 715 291 35 Chan K C, Tso C Y, Hussain A and Chao C Y H 2019 Appl. Thermal Eng. 161 114112 36 Zunger A, Katzir A and Halperin A 1976 Phys. Rev. B 13 5560 37 Kou Y and Forstner J 2016 Opt. Express 24 4714 38 Bian Y and Gong Q 2013 Appl. Opt. 52 5733 39 Zhao Y, Li X G, Zhou X and Zhang Y N 2016 Sensors and Actuators B: Chemical 231 324 40 Gao H, Cao Q, Teng D, Zhu M and Wang K 2015 Opt. Express 23 27457 41 Yusheng B, Zheng Z, Pengfei Y, Jing X, Guanjun W, Lei L, Jiansheng L, Jinsong Z and Tao Z 2014 IEEE J. Select. Top. Quantum Electron. 20 181 42 Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006 43 Bian Y, Zheng Z, Zhao X, Zhu J and Zhou T 2009 Opt. Express 17 21320 44 Ciminelli C, Campanella C M, Dell'Olio F, Campanella C E and Armenise M N 2013 Prog. Quantum Electron. 37 51 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|