Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014207    DOI: 10.1088/1674-1056/abb65c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition

Xu Wang(王旭)1, Jue Wang(王珏)1, Tao Ma(马涛)1,2,†, Heng Liu(刘恒)1,3, and Fang Wang(王芳)1,2
1 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China; 2 Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China; 3 Academician Workstation of Electromagnetic Wave Engineering of Henan Province, Xinxiang 453007, China
Abstract  We investigate a graphene-coated nanowire waveguide (GCNW) composed of two suspended wedge porous silicon nanowires and a thin Ag partition. The plasmonic characteristics of the proposed structure in terahertz (THz) frequency band are simulated by the finite element method (FEM). The parameters including the gap between the nanowires and Ag partition, the height of the nanowire, the thickness of the Ag partition, and the Fermi level of graphene, are optimized. The simulation results show that a normalized mode field area of ∼ 10 -4 and a figure of merit of ∼ 100 can be achieved. Compared with the cylindrical GCNW and isolated GCNW, the proposed wedge GCNW has good electric field enhancement. A waveguide sensitivity of 32.28 is obtained, which indicates the prospects of application in refractive index (RI) sensing in THz frequency band. Due to the adjustable plasmonic characteristics by changing the Fermi level (E F), the proposed structure has promising applications in the electro-optic modulations, optical interconnects, and optical switches.
Keywords:  surface plasmon polariton      graphene      porous silicon      finite element method (FEM)  
Received:  01 June 2020      Revised:  12 August 2020      Accepted manuscript online:  09 September 2020
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61627818), the Key Project of Henan Provincial Education Department, China (Grant No. 19A510002), the Natural Science Project of the Cultivation Foundation of Henan Provincial Normal University, China (Grant No. 2017PL04), and the Ph. D. Program of Henan Normal University, China (Grant Nos. 5101239170010 and gd17167).
Corresponding Authors:  Corresponding author. E-mail: matao@htu.edu.cn   

Cite this article: 

Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳) Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition 2021 Chin. Phys. B 30 014207

1 Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
2 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
3 Liu X J, Yang L W, Ma J Y, Li C L, Jin W and Bi W H 2018 Chin. Phys. B 27 104206
4 Fu G W, Wang Y, Wang B L, Yang K L, Wang X Y, Fu X H, Jin W and Bi W H 2020 Chin. Phys. B 29 34209
5 Hu D J, Lim J L, Jiang M, Wang Y, Luan F, Shum P P, Wei H and Tong W 2012 Opt. Lett. 37 2283
6 Zhu B, Ren G, Cryan M J, Gao Y, Yang Y, Wu B, Lian Y and Jian S 2015 Opt. Mater. Express 5 2174
7 Lu W 2016 Appl. Opt. 55 5095
8 Zhang Z Q, Jia Y X, Guo X F, Ge D H, Cheng G G and Ding J N 2018 Acta Phys. Sin. 67 033101 (in Chinese)
9 Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801
10 Zhang H J, Zheng G G, Cheng Y Y, Zou X J and Xu L H 2018 Chin. Phys. Lett. 35 038102
11 Cen G, Zhang Z B, Lv X Y, Liu K H and Li Z Q 2020 Acta Phys. Sin. 69 027803 (in Chinese)
12 Cheng X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 77803
13 Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93
14 Cen C, Lin H, Liang C, Huang J, Chen X, Yi Z, Tang Y, Duan T, Xu X, Xiao S and Yi Y 2018 Superlattices and Microstructures 120 427
15 Chen J, Zeng Y, Xu X, Chen X, Zhou Z, Shi P, Yi Z, Ye X, Xiao S and Yi Y 2018 Nanomaterials 8 175
16 He S, Zhang X and He Y 2013 Opt. Express 21 30664
17 Xiao B, Qin K, Xiao S and Han Z 2015 Opt. Commun. 355 602
18 Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S and Qin S Q 2015 Opt. Express 23 5147
19 Ye S, Wang Z, Tang L, Zhang Y, Lu R and Liu Y 2014 Opt. Express 22 26173
20 Qi L and Liu C 2019 Opt. Mater. Express 9 1298
21 Tassin P, Koschny T, Kafesaki M and Soukoulis C M 2012 Nat. Photon. 6 259
22 Yuan Y, Yao J and Xu W 2012 Opt. Lett. 37 960
23 Teng D, Wang K, Li Z, Zhao Y, Zhao G, Li H and Wang H 2019 Appl. Sci. 9 2351
24 Liu J P, Zhai X, Xie F, Wang L L, Xia S X, Li H J, Luo X and Shang X J 2017 J. Lightwave Technol. 35 1971
25 Mbonye M, Mendis R and Mittleman D M 2009 Appl. Phys.s Lett. 95 233506
26 Hajati M and Hajati Y 2016 J. Opt. Soc. Am. B 33 2560
27 Hajati M and Hajati Y 2017 Appl. Opt. 56 870
28 Charrier J, Lupi C, Haji L and Boisrobert C 2000 Mater. Sci. Semicond. Process. 3 357
29 Hwang K W and Park S H 2015 Material Research Innovations 19 S8-549
30 Zhang H, Jie L and Jia Z 2018 Sensors 18 105
31 Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovc\'ík L and Salamakha M Y 2019 Molecular Crystals and Liquid Crystals 673 32
32 Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M and Charrier J 2017 Opt. Mater. 72 596
33 Jiao L S, Liu J Y, Li H Y, Wu T S, Li F, Wang H Y and Niu L 2016 J. Power Sources 315 9
34 Shin D H, Kim J H, Kim J H, Jang C W, Seo S W, Lee H S, Kim S and Choi S H 2017 J. Alloys Compd. 715 291
35 Chan K C, Tso C Y, Hussain A and Chao C Y H 2019 Appl. Thermal Eng. 161 114112
36 Zunger A, Katzir A and Halperin A 1976 Phys. Rev. B 13 5560
37 Kou Y and Forstner J 2016 Opt. Express 24 4714
38 Bian Y and Gong Q 2013 Appl. Opt. 52 5733
39 Zhao Y, Li X G, Zhou X and Zhang Y N 2016 Sensors and Actuators B: Chemical 231 324
40 Gao H, Cao Q, Teng D, Zhu M and Wang K 2015 Opt. Express 23 27457
41 Yusheng B, Zheng Z, Pengfei Y, Jing X, Guanjun W, Lei L, Jiansheng L, Jinsong Z and Tao Z 2014 IEEE J. Select. Top. Quantum Electron. 20 181
42 Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006
43 Bian Y, Zheng Z, Zhao X, Zhu J and Zhou T 2009 Opt. Express 17 21320
44 Ciminelli C, Campanella C M, Dell'Olio F, Campanella C E and Armenise M N 2013 Prog. Quantum Electron. 37 51
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!