Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047401    DOI: 10.1088/1674-1056/21/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Preparation and the physical properties of antiperovskite-type compounds Cd1-xInxNNi3 (0≤x≤0.2) and Cd1-yCuyNNi3 (0≤y≤0.2)

He Bing(贺兵)a)b)†, Dong Cheng(董成)a), Yang Li-Hong(杨立红)a), Ge Lin-Hui(葛林慧)a), Mu Li-Bin(慕利斌)a), Chen Xiao-Chao(陈晓超)a)
a. National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b. Luzhou Medical College, Luzhou 646000, China
Abstract  Two series of Cd1-xInxNNi3 (0≤x≤0.2) and Cd1-yCuyNNi3 (0≤y≤0.2) samples were prepared from CdO, In2O3, CuO, and nickel powders under NH3 atmosphere at 773 K. The structural and physical properties were investigated by means of X-ray powder diffraction temperature-dependent resistivity and magnetic measurements. X-ray powder diffraction results showed that the Cd1-xInxNNi3 and Cd1-yCuyNNi3 compounds have a typical antiperovskite structure, and the CdNNi3, Cd0.9In0.1NNi3, and Cd0.9Cu0.1NNi3 compounds show metallic temperature-dependent resistivity and exhibit a Fermi liquid behavior at low temperature. In contrast to the paramagnetism previously reported, the CdNNi3 sample exhibits very soft and weak ferromagnetism, and no superconductivity was found in the Cd1-xInxNNi3 and Cd1-yCuyNNi3 samples down to 2 K. Each sample exhibited very soft and weak ferromagnetism, and the temperature dependence of the magnetization of the Cd1-xInxNNi3 and Cd1-yCuyNNi3 samples can be well fitted to the combination of a Bloch term and a Curie-Weiss term.
Keywords:  nitride      antiperovskite      weak ferromagnetism      Fermi liquid  
Received:  27 November 2011      Revised:  06 January 2012      Accepted manuscript online: 
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20871119), the National Basic Research Program of China (973 Program) (Grant Nos. 2011CBA00112 and 2011CB808202), and the Natural Science Foundation of Luzhou Medical College.
Corresponding Authors:  He Bing,hebing@ssc.iphy.ac.cn     E-mail:  hebing@ssc.iphy.ac.cn

Cite this article: 

He Bing(贺兵), Dong Cheng(董成), Yang Li-Hong(杨立红), Ge Lin-Hui(葛林慧), Mu Li-Bin(慕利斌), Chen Xiao-Chao(陈晓超) Preparation and the physical properties of antiperovskite-type compounds Cd1-xInxNNi3 (0≤x≤0.2) and Cd1-yCuyNNi3 (0≤y≤0.2) 2012 Chin. Phys. B 21 047401

[1] He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S and Inumara K 2001 Nature (London) 411 54
[2] Uehara M, Amano T, Takano S, Kori T, Yamazaki T and Kimishima Y 2006 Physica C 440 6
[3] Park M S, Giim J, Park S H, Lee Y W, Lee S I and Choi E J 2004 Supercond. Sci. Technol. 17 274
[4] Tong P, Sun Y P, Zhu X B and Song W H 2006 Phys. Rev. B 74 224416
[5] Tong P, Sun Y P, Zhu X B and Song W H 2006 Phys. Rev. B 73 245106
[6] Tong P, Sun Y P, Zhu X B and Song W H 2007 Solid State Commun. 141 33
[7] Matar S F, Mohn P, Demazeau G and Siberchicot B 1988 J. Phys. 49 1761 (Paris)
[8] Matar S F, Demazeau G and Siberchicot B 1990 IEEE Trans. Magn. 26 60
[9] Cordier-Robert C and Foct J 1992 Eur. J. Solid State Inorg. Chem. 29 39
[10] Mohn P, Schwarz K, Matar S F and Demazeau G 1992 Phys. Rev. B 45 4000
[11] Kuhnen C A, de Figueiredo R S, Drago V and da Silva E Z 1992 J. Magn. Magn. Mater. 111 95
[12] Kuhnen C A and dos Santos A V 1993 Solid State Commun. 85 273
[13] Kuhnen C A and dos Santos A V 1994 J. Magn. Magn. Mater. 130 353
[14] Suzuki S, Sakamoto H, Minegismi J and Omote V 1981 IEEE Trans. Magn. 17 3017
[15] Matar S F, Demazeau G, Hagenmuller P, Armitage J G M and Riedi P C 1989 Eur. J. Solid State Inorg. Chem. 26 517
[16] Fruchart D and Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781
[17] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[18] Uehara M, Uehara A, Kozawa K and Kimishima Y 2009 J. Phys. Soc. Jpn. 78 033702
[19] Cao W H, He B, Liao C Z, Yang L H, Zeng L M and Dong C 2009 J. Solid State Chem. 182 3353
[20] Uehara M, Uehara A, Kozawa K and Kimishima Y 2010 Physica C 470 S688
[21] Li C, Chen W G, Wang F, Li S F, Sun Q, Wang S Y and Jia Y 2009 J. Appl. Phys. 105 123921
[22] Dong C 1999 J. Appl. Crystallogr. 32 838
[23] Yamaura K and Takayama-Muromachi E 2001 Phys. Rev. Lett. 64 224424
[24] Sohn B H, Cohen R E and Papaefthyrniou G C 1998 J. Magn. Magn. Mater. 182 216
[25] Zhang L, Papaefthymiou G C and Ying J Y 2001 J. Phys. Chem. B 105 7414
[26] Luo W L, Nagel S R, Rosenbaum T F and Rosensweig R E 1991 Phys. Rev. Lett. 67 2721
[27] O'Grady K, El-Hilo M and Chantrell R W 1993 IEEE Trans. Magn. 29 2608
[28] Cièsak J, Costa B F O, Dubiel S M, Reissner M and Steiner W 2005 J. Phys.: Condens. Matter 17 2985
[29] Yue L, Sabiryanov R, Kirkpatrick E M and Pelecky D L L 2000 Phys. Rev. B 62 8969
[30] Dyson F J 1956 Phys. Rev. 102 1217
[31] Pauthenet R 1982 J. Appl. Phys. 53 2029
[32] Holmes M, O'Grady K and Popplewell J 1990 J. Magn. Magn. Mater. 85 47
[33] Söffge F and Schmidbauer E 1981 J. Magn. Magn. Mater. 24 54
[34] Dubovik V M, Martsenyuk M A and Martsenyuk N M 1995 J. Magn. Magn. Mater. 150 105
[35] Hou Z F 2010 Solid State Comm. 150 1874
[1] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[2] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[5] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[6] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[7] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[8] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[9] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[10] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[11] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[12] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[13] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[14] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[15] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
No Suggested Reading articles found!