CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction |
Lan Zhang(张欄)1, Yin Zhong(钟寅)1,†, and Hong-Gang Luo(罗洪刚)1,2,‡ |
1 School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Beijing Computational Science Research Center, Beijing 100084, China
|
|
|
Abstract We investigate a modified Anderson model at the large-N limit, where the Coulomb interaction is replaced by the Sachdev-Ye-Kitaev random interaction. The resistivity of conduction electron ρ c has a minimum value around temperature $T^\star$, which is similar to the Kondo system, but the impurity electron's density of state A d(ω) demonstrates no sharp-peak like the Kondo resonance around the Fermi surface. This provides a counterintuitive example where resistivity minimum exists without Kondo resonance. The impurity electron's entropy S d and specific heat capacity $C_v$ show a crossover from Fermi liquid to a non-Fermi liquid behavior dependent on temperature. The system is a Fermi liquid at $T<T^\star$ and becomes a non-Fermi liquid at $T>T^\star$, and then becomes a Fermi gas at sufficiently high temperatures $T\gg T^\star$. The non-Fermi liquid at the intermediate-T regime does not occur in the standard Anderson model. We also make a renormalization group analysis, which confirms the crossover from Fermi liquid to the non-Fermi behavior. It is emphasized that the resistivity minimum emerges in our model when the system behaves as a non-Fermi liquid rather than Fermi liquid, which provides an alternative example showing resistivity minimum in condensed matter physics.
|
Received: 09 October 2020
Revised: 20 January 2021
Accepted manuscript online: 18 March 2021
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11704166, and 11834005) and the Fundamental Research Funds for the Central Universities, China, and PCSIRT (Grant No. IRT-16R35). |
Corresponding Authors:
†Corresponding author. E-mail: zhongy@lzu.edu.cn ‡Corresponding author. E-mail: luohg@lzu.edu.cn
|
Cite this article:
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚) Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction 2021 Chin. Phys. B 30 047106
|
1 Wilson K G 1975 Rev. Mod. Phys. 47 773 2 Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003 3 Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044 4 Krishna-murthy H R, Wilson K G and Wilkins J W 1975 Phys. Rev. Lett. 35 1101 5 Hewson A C1997 The Kondo Problem to Heavy Fermions (Cambridge University Press) 6 Coleman P2015 Introduction to Many-Body Physics (Cambridge University Press) 7 Coleman P2006 arXiv:cond-mat/0612006v3 8 Anderson P W 1961 Phys. Rev. 124 41 9 Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491 10 Kondo J 1964 Prog. Theor. Phys. 32 37 11 Chubukov A V1964 Physics 3 70 12 Schroder A, Aeppli G, Coldea R, Adams M, Stockert O, Lohneysen H, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351 13 Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524 14 Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A H and Coleman P 2011 Science 331 316 15 Cubrovic M, Zaanen J and Schalm K 2009 Science 325 439 16 Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804 17 Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 18 Pepin C 2005 Phys. Rev. Lett. 94 066402 19 Senthil T, Sachdev S and Vojta M 2003 Phys. Rev. Lett. 90 216403 20 Senthil T, Sachdev S and Vojta M 2004 Phys. Rev. B 69 035111 21 Senthil Y F and Pines D 2014 Proc. Natl. Acad. Sci. 111 8398 22 Chowdhury D, Werman Y, Berg E and Senthil T2018 Phys. Rev. X 8 031024 23 Haldar A, Banerjee S and Shenoy V B 2018 Phys. Rev. B 97 241106 24 Bi Z, Jian C M, You Y Z, Pawlak K A and Xu C 2017 Phys. Rev. B 95 205105 25 Ben-Zion D and McGreevy J 2018 Phys. Rev. B 97 155117 26 Sachdev S and Ye J 1993 Phys. Rev. Lett. 70 3339 27 Parcollet O and Georges A 1999 Phys. Rev. B 59 5341 28 Georges A, Parcollet O and Sachdev S 2000 Phys. Rev. Lett. 85 840 29 Georges A, Parcollet O and Sachdev S 2001 Phys. Rev. B 63 134406 30 Camjayi A and Rozenberg M J 2003 Phys. Rev. Lett. 90 217202 31 Kitaev A2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/ 32 Kitaev A2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ 33 Berkooz M, Narayan P, Rozali M and Simon J2017 J. High Energy Phys. 1 138 34 Gu Y, Qi X L and Standford D2017 J. High Energy Phys. 5 125 35 Sachdev S 2010 Phys. Rev. Lett. 105 151602 36 Polchinski J and Rosenhaus V2016 J. High Energy Phys. 4 1029 37 Sachdev S2015 Phys. Rev. X 5 041025 38 Maldacena J and Standford D 2016 Phys. Rev. D 94 106002 39 Pikulin D and Franz M2017 Phys. Rev. X 7 031006 40 Fu D, Gaiotto D, Maldacena J and Sachdev S 2017 Phys. Rev. D 95 026009 41 Kukuljan I, Grozdanov S and Prosen T 2017 Phys. Rev. B 96 060301 42 Zhang P 2017 Phys. Rev. B 96 205138 43 Hosur P, Qi X L, Roberts D A and Yoshida B2016 J. High Energy Phys. 2 1029 44 Jian S K and Yao H 2017 Phys. Rev. Lett. 119 206602 45 You Y Z, Ludwig A W W and Xu C 2017 Phys. Rev. B 95 115150 46 Song X Y, Jian C W and Balents L 2017 Phys. Rev. Lett. 119 216601 47 Patel A A, McGreevy J, Arovas D P and Sachdev S2018 Phys. Rev. X 8 021049 48 Banerjee S and Altman E 2017 Phys. Rev. B 95 134302 49 Chen X, Fan R, Chen Y, Zhai H and Zhang P 2017 Phys. Rev. Lett. 119 207603 50 Jian S K, Xian Z Y and Yao H 2018 Phys. Rev. B 97 205141 51 Haldar A and Shenoy V B 2018 Phys. Rev. B 98 165135 52 Zhong Y 2018 Journal of Physics Communications 2 095014 53 Bickers N E, Cox L D and Wilkins J W 1987 Phys. Rev. B 36 2036 54 Bickers N E, Cox L D and Wilkins J W 1985 Phys. Rev. Lett. 54 230 55 Li Z Z2002 Solid State Theory(Higher Education Press) 56 Abrikosov A A, Gorkov L P and Dzyaloshinski I E1964 Methods of Quantum Field Theory in Statistical Physics(Prentice-Hall) 57 Czycholl G and Leder H J 1981 Zeitschrift fur Physik B 44 59 58 Newns D M and Read N 1987 Adv. Phys. 36 799 59 Ashcroft N W and Mermin N D1976 Solid State Physics (Horcort University Publishers) 60 Sarachik M P, Corenzwit E and Longinotti L D1964 Phys. Rev. 135 A1041 61 Fu W and Sachdev S 2016 Phys. Rev. B 94 035135 62 Danshita I, Hanada M and Tezuka M2017 Prog. Theor. Exp. Phys. 2017 083 63 Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 64 Foss-Feig M and Rey A M 2011 Phys. Rev. A 84 053619 65 Isaev L and Rey A M 2015 Phys. Rev. Lett. 115 165302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|