Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047106    DOI: 10.1088/1674-1056/abefcb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction

Lan Zhang(张欄)1, Yin Zhong(钟寅)1,†, and Hong-Gang Luo(罗洪刚)1,2,‡
1 School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;  2 Beijing Computational Science Research Center, Beijing 100084, China
Abstract  We investigate a modified Anderson model at the large-N limit, where the Coulomb interaction is replaced by the Sachdev-Ye-Kitaev random interaction. The resistivity of conduction electron ρ c has a minimum value around temperature $T^\star$, which is similar to the Kondo system, but the impurity electron's density of state A d(ω) demonstrates no sharp-peak like the Kondo resonance around the Fermi surface. This provides a counterintuitive example where resistivity minimum exists without Kondo resonance. The impurity electron's entropy S d and specific heat capacity $C_v$ show a crossover from Fermi liquid to a non-Fermi liquid behavior dependent on temperature. The system is a Fermi liquid at $T<T^\star$ and becomes a non-Fermi liquid at $T>T^\star$, and then becomes a Fermi gas at sufficiently high temperatures $T\gg T^\star$. The non-Fermi liquid at the intermediate-T regime does not occur in the standard Anderson model. We also make a renormalization group analysis, which confirms the crossover from Fermi liquid to the non-Fermi behavior. It is emphasized that the resistivity minimum emerges in our model when the system behaves as a non-Fermi liquid rather than Fermi liquid, which provides an alternative example showing resistivity minimum in condensed matter physics.
Keywords:  Anderson model      Sachdev-Ye-Kitaev interaction      non-Fermi liquid  
Received:  09 October 2020      Revised:  20 January 2021      Accepted manuscript online:  18 March 2021
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11704166, and 11834005) and the Fundamental Research Funds for the Central Universities, China, and PCSIRT (Grant No. IRT-16R35).
Corresponding Authors:  Corresponding author. E-mail: zhongy@lzu.edu.cn Corresponding author. E-mail: luohg@lzu.edu.cn   

Cite this article: 

Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚) Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction 2021 Chin. Phys. B 30 047106

1 Wilson K G 1975 Rev. Mod. Phys. 47 773
2 Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
3 Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
4 Krishna-murthy H R, Wilson K G and Wilkins J W 1975 Phys. Rev. Lett. 35 1101
5 Hewson A C1997 The Kondo Problem to Heavy Fermions (Cambridge University Press)
6 Coleman P2015 Introduction to Many-Body Physics (Cambridge University Press)
7 Coleman P2006 arXiv:cond-mat/0612006v3
8 Anderson P W 1961 Phys. Rev. 124 41
9 Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
10 Kondo J 1964 Prog. Theor. Phys. 32 37
11 Chubukov A V1964 Physics 3 70
12 Schroder A, Aeppli G, Coldea R, Adams M, Stockert O, Lohneysen H, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
13 Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524
14 Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A H and Coleman P 2011 Science 331 316
15 Cubrovic M, Zaanen J and Schalm K 2009 Science 325 439
16 Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
17 Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
18 Pepin C 2005 Phys. Rev. Lett. 94 066402
19 Senthil T, Sachdev S and Vojta M 2003 Phys. Rev. Lett. 90 216403
20 Senthil T, Sachdev S and Vojta M 2004 Phys. Rev. B 69 035111
21 Senthil Y F and Pines D 2014 Proc. Natl. Acad. Sci. 111 8398
22 Chowdhury D, Werman Y, Berg E and Senthil T2018 Phys. Rev. X 8 031024
23 Haldar A, Banerjee S and Shenoy V B 2018 Phys. Rev. B 97 241106
24 Bi Z, Jian C M, You Y Z, Pawlak K A and Xu C 2017 Phys. Rev. B 95 205105
25 Ben-Zion D and McGreevy J 2018 Phys. Rev. B 97 155117
26 Sachdev S and Ye J 1993 Phys. Rev. Lett. 70 3339
27 Parcollet O and Georges A 1999 Phys. Rev. B 59 5341
28 Georges A, Parcollet O and Sachdev S 2000 Phys. Rev. Lett. 85 840
29 Georges A, Parcollet O and Sachdev S 2001 Phys. Rev. B 63 134406
30 Camjayi A and Rozenberg M J 2003 Phys. Rev. Lett. 90 217202
31 Kitaev A2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/
32 Kitaev A2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
33 Berkooz M, Narayan P, Rozali M and Simon J2017 J. High Energy Phys. 1 138
34 Gu Y, Qi X L and Standford D2017 J. High Energy Phys. 5 125
35 Sachdev S 2010 Phys. Rev. Lett. 105 151602
36 Polchinski J and Rosenhaus V2016 J. High Energy Phys. 4 1029
37 Sachdev S2015 Phys. Rev. X 5 041025
38 Maldacena J and Standford D 2016 Phys. Rev. D 94 106002
39 Pikulin D and Franz M2017 Phys. Rev. X 7 031006
40 Fu D, Gaiotto D, Maldacena J and Sachdev S 2017 Phys. Rev. D 95 026009
41 Kukuljan I, Grozdanov S and Prosen T 2017 Phys. Rev. B 96 060301
42 Zhang P 2017 Phys. Rev. B 96 205138
43 Hosur P, Qi X L, Roberts D A and Yoshida B2016 J. High Energy Phys. 2 1029
44 Jian S K and Yao H 2017 Phys. Rev. Lett. 119 206602
45 You Y Z, Ludwig A W W and Xu C 2017 Phys. Rev. B 95 115150
46 Song X Y, Jian C W and Balents L 2017 Phys. Rev. Lett. 119 216601
47 Patel A A, McGreevy J, Arovas D P and Sachdev S2018 Phys. Rev. X 8 021049
48 Banerjee S and Altman E 2017 Phys. Rev. B 95 134302
49 Chen X, Fan R, Chen Y, Zhai H and Zhang P 2017 Phys. Rev. Lett. 119 207603
50 Jian S K, Xian Z Y and Yao H 2018 Phys. Rev. B 97 205141
51 Haldar A and Shenoy V B 2018 Phys. Rev. B 98 165135
52 Zhong Y 2018 Journal of Physics Communications 2 095014
53 Bickers N E, Cox L D and Wilkins J W 1987 Phys. Rev. B 36 2036
54 Bickers N E, Cox L D and Wilkins J W 1985 Phys. Rev. Lett. 54 230
55 Li Z Z2002 Solid State Theory(Higher Education Press)
56 Abrikosov A A, Gorkov L P and Dzyaloshinski I E1964 Methods of Quantum Field Theory in Statistical Physics(Prentice-Hall)
57 Czycholl G and Leder H J 1981 Zeitschrift fur Physik B 44 59
58 Newns D M and Read N 1987 Adv. Phys. 36 799
59 Ashcroft N W and Mermin N D1976 Solid State Physics (Horcort University Publishers)
60 Sarachik M P, Corenzwit E and Longinotti L D1964 Phys. Rev. 135 A1041
61 Fu W and Sachdev S 2016 Phys. Rev. B 94 035135
62 Danshita I, Hanada M and Tezuka M2017 Prog. Theor. Exp. Phys. 2017 083
63 Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
64 Foss-Feig M and Rey A M 2011 Phys. Rev. A 84 053619
65 Isaev L and Rey A M 2015 Phys. Rev. Lett. 115 165302
[1] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[2] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[3] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
[4] Electronic transport properties of the single-impurity Anderson model
Chen Ming-Lun(陈明伦) and Wang Shun-Jin(王顺金). Chin. Phys. B, 2007, 16(7): 2096-2100.
No Suggested Reading articles found!