Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077802    DOI: 10.1088/1674-1056/abec2f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Linear and nonlinear optical response of g-C3N4-based quantum dots

Jing-Zhi Zhang(张竞之)1 and Hong Zhang(张红)1,2,†
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  Graphite carbon nitride (g-C3N4) attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells. In this work, we design different g-C3N4-based quantum dots (gCNQDs), carry out a systematic study of optical properties, and elucidate the shape selectivity, composite nanostructure, and outfield effect. In particular, composites of gCNQDs and metal nanochains present excellent optical response, making it applicable to bioimaging, nano-plasma devices, and metalloenzyme in infrared light related fields. Besides, QDs which original bridging nitrogen atoms are replaced by amino (-NH2), hydroxyl (-OH), and methyl (-CH3) functional groups respectively, have excellent spectral selectivity in the deep ultraviolet region. More interestingly, in the study of the laser interaction with materials, the gCNQDs exhibit extremely high stability and light corrosion resistance. Phase transition from insulation to metal is observed under the critical condition of about 5 eV intensity or 337 nm wavelength. All provided theoretical support for designs and applications in g-C3N4 quantum devices.
Keywords:  graphite carbon nitride      optical response      ultra-fast laser      plasmon  
Received:  02 February 2021      Revised:  28 February 2021      Accepted manuscript online:  05 March 2021
PACS:  78.67.Hc (Quantum dots)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  79.20.Ds (Laser-beam impact phenomena)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253), and Science Speciality Program of Sichuan University (Grant No. 2020SCUNL210).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Jing-Zhi Zhang(张竞之) and Hong Zhang(张红) Linear and nonlinear optical response of g-C3N4-based quantum dots 2021 Chin. Phys. B 30 077802

[1] Wen J Q, Xie J, Chen X B and Li X 2017 Appl. Surf. Sci. 391 72
[2] Sun Y P, Ha W, Chen J, Qi H Y and Shi Y P 2016 Trac-Trends Anal. Chem. 84 12
[3] Cao S W, Jiang J, Zhu B C and Yu J G 2016 Phys. Chem. Chem. Phys. 18 19457
[4] Ke X, Yang M M, Wang W Z, Luo D X and Zhang M L 2019 Materials 12 2558
[5] Zhu B C, Xia P F, Li Y H, Ho W K and Yu J G 2017 Appl. Surf. Sci. 391 175
[6] Lam S M, Sin J C and Mohamed A R 2016 Mater. Sci. Semicond. Process 47 62
[7] Ye S, Wang R, Wu M Z and Yuan Y P 2015 Appl. Surf. Sci. 358 15
[8] Xia P F, Zhu B C, Yu J G, Cao S W and Jaroniec M 2017 J. Mater. Chem. A 5 3230
[9] Li Y, Feng X H, Lu Z X, Yin H, Liu F and Xiang Q J 2018 J. Colloid Interface Sci. 513 866
[10] Fu J W, Yu J G, Jiang C J and Cheng B 2018 Adv. Energy Mater. 8 1701503
[11] He K L, Xie J, Liu Z Q, Li N, Chen X B, Hu J and Li X 2018 J. Mater. Chem. A 6 13110
[12] Kumar S, Dhiman A, Sudhagar P and Krishnan V 2018 Appl. Surf. Sci. 447 802
[13] Wang Y, Wang X C and Antonietti M 2012 Angew. Chem. Int. Ed. 51 68
[14] Zheng Y, Liu J, Liang J, Jaroniec M and Qiao S Z 2012 Energy Environ. Sci. 5 6717
[15] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C and Ajayan P M 2013 Adv. Mater. 25 2452
[16] Zhang J S, Chen Y and Wang X C 2015 Energy Environ. Sci. 8 3092
[17] Sun S D and Liang S H 2017 Nanoscale 9 10544
[18] Wang W J, Jimmy C Y, Shen Z R, Chan D K L and Gu T 2014 Chem. Commun. 50 10148
[19] Sano T, Tsutsui S, Koike K, Hirakawa T, Teramoto Y, Negishi N and Takeuchi K 2013 J. Mater. Chem. A 1 6489
[20] Zhang J S, Guo F S and Wang X C 2013 Adv. Funct. Mater. 23 3008
[21] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[22] Marques M A, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[24] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[25] Botti S, Schindlmayr A, Del Sole R and Reining L 2007 Rep. Prog. Phys. 70 357
[26] Li Y, Li X, Zhang H W, Fan J J and Xiang Q J 2020 J. Mater. Sci. Technol. 56 69
[27] Huang Q, Yu J G, Cao S W, Cui C and Cheng B 2015 Appl. Surf. Sci. 358 350
[28] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[29] Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602
[30] Yan J and Gao S W 2008 Phys. Rev. B 78 235413
[31] Zhao F, Cheng H H, Hu Y, Song L, Zhang Z P, Jiang L and Qu L T 2014 Sci. Rep. 4 5882
[32] Cheng Q, He Y, Ge Y L, Zhou J G and Song G W 2018 Microchim. Acta 185 332
[33] Nilius N, Wallis T M and Ho W 2002 Science 297 1853
[34] Mishchenko E G, Shytov A V and Silvestrov P G 2010 Phys. Rev. Lett. 104 156806
[35] Schwinghammer K, Tuffy B, Mesch M B, Wirnhier E, Martineau C, Taulelle F, Schnick W, Senker J and Lotsch B V 2013 Angew. Chem. Int. Ed. 52 2435
[36] Kobayashi Y, Fukui K I, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406
[37] Li H, Shao F Q, Huang H, Feng J J and Wang A J 2016 Sens. Actuators B Chem. 226 506
[38] Zhan Y, Liu Z M, Liu Q Q, Huang D, Wei Y, Hu Y C, Lian X J and Hu C F 2017 New J. Chem. 41 3930
[39] Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y and Liu R S 2016 Inorg. Chem. 55 10267
[40] Chan M H, Pan Y T, Lee I J, Chen C W, Chan Y C, Hsiao M, Wang F, Sun L D, Chen X Y and Liu R S 2017 Small 13 1700038
[41] Autere A, Jussila H, Dai Y Y, Wang Y D, Lipsanen H and Sun Z P 2018 Adv. Mater. 30 1705963
[42] Cavalleri A 2018 Science 362 525
[43] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A and Vardeny Z V 2015 Nat. Phys. 11 427
[44] Fan M Q, Li T, Li G Q, Zhao S Z, Yang K J, Zhang S Y, Zhang B T, Xu J Q and Krankel C 2017 Opt. Express 25 12796
[45] Anisimov S I, Kapeliovich B L and Perelman T L 1974 Sov. Phys. JETP 39 375
[46] Lin J H, Zhang H, Zhang B F, Zhao J M, Miyamoto Y and Cheng X L 2018 J. Phys. Chem. C 122 19992
[47] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345
[48] Tian N, Huang H W, Du X, Dong F and Zhang Y H 2019 J. Mater. Chem. A 7 11584
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
No Suggested Reading articles found!