CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Linear and nonlinear optical response of g-C3N4-based quantum dots |
Jing-Zhi Zhang(张竞之)1 and Hong Zhang(张红)1,2,† |
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China |
|
|
Abstract Graphite carbon nitride (g-C3N4) attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells. In this work, we design different g-C3N4-based quantum dots (gCNQDs), carry out a systematic study of optical properties, and elucidate the shape selectivity, composite nanostructure, and outfield effect. In particular, composites of gCNQDs and metal nanochains present excellent optical response, making it applicable to bioimaging, nano-plasma devices, and metalloenzyme in infrared light related fields. Besides, QDs which original bridging nitrogen atoms are replaced by amino (-NH2), hydroxyl (-OH), and methyl (-CH3) functional groups respectively, have excellent spectral selectivity in the deep ultraviolet region. More interestingly, in the study of the laser interaction with materials, the gCNQDs exhibit extremely high stability and light corrosion resistance. Phase transition from insulation to metal is observed under the critical condition of about 5 eV intensity or 337 nm wavelength. All provided theoretical support for designs and applications in g-C3N4 quantum devices.
|
Received: 02 February 2021
Revised: 28 February 2021
Accepted manuscript online: 05 March 2021
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
79.20.Ds
|
(Laser-beam impact phenomena)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253), and Science Speciality Program of Sichuan University (Grant No. 2020SCUNL210). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红) Linear and nonlinear optical response of g-C3N4-based quantum dots 2021 Chin. Phys. B 30 077802
|
[1] Wen J Q, Xie J, Chen X B and Li X 2017 Appl. Surf. Sci. 391 72 [2] Sun Y P, Ha W, Chen J, Qi H Y and Shi Y P 2016 Trac-Trends Anal. Chem. 84 12 [3] Cao S W, Jiang J, Zhu B C and Yu J G 2016 Phys. Chem. Chem. Phys. 18 19457 [4] Ke X, Yang M M, Wang W Z, Luo D X and Zhang M L 2019 Materials 12 2558 [5] Zhu B C, Xia P F, Li Y H, Ho W K and Yu J G 2017 Appl. Surf. Sci. 391 175 [6] Lam S M, Sin J C and Mohamed A R 2016 Mater. Sci. Semicond. Process 47 62 [7] Ye S, Wang R, Wu M Z and Yuan Y P 2015 Appl. Surf. Sci. 358 15 [8] Xia P F, Zhu B C, Yu J G, Cao S W and Jaroniec M 2017 J. Mater. Chem. A 5 3230 [9] Li Y, Feng X H, Lu Z X, Yin H, Liu F and Xiang Q J 2018 J. Colloid Interface Sci. 513 866 [10] Fu J W, Yu J G, Jiang C J and Cheng B 2018 Adv. Energy Mater. 8 1701503 [11] He K L, Xie J, Liu Z Q, Li N, Chen X B, Hu J and Li X 2018 J. Mater. Chem. A 6 13110 [12] Kumar S, Dhiman A, Sudhagar P and Krishnan V 2018 Appl. Surf. Sci. 447 802 [13] Wang Y, Wang X C and Antonietti M 2012 Angew. Chem. Int. Ed. 51 68 [14] Zheng Y, Liu J, Liang J, Jaroniec M and Qiao S Z 2012 Energy Environ. Sci. 5 6717 [15] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C and Ajayan P M 2013 Adv. Mater. 25 2452 [16] Zhang J S, Chen Y and Wang X C 2015 Energy Environ. Sci. 8 3092 [17] Sun S D and Liang S H 2017 Nanoscale 9 10544 [18] Wang W J, Jimmy C Y, Shen Z R, Chan D K L and Gu T 2014 Chem. Commun. 50 10148 [19] Sano T, Tsutsui S, Koike K, Hirakawa T, Teramoto Y, Negishi N and Takeuchi K 2013 J. Mater. Chem. A 1 6489 [20] Zhang J S, Guo F S and Wang X C 2013 Adv. Funct. Mater. 23 3008 [21] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 [22] Marques M A, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60 [23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [24] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601 [25] Botti S, Schindlmayr A, Del Sole R and Reining L 2007 Rep. Prog. Phys. 70 357 [26] Li Y, Li X, Zhang H W, Fan J J and Xiang Q J 2020 J. Mater. Sci. Technol. 56 69 [27] Huang Q, Yu J G, Cao S W, Cui C and Cheng B 2015 Appl. Surf. Sci. 358 350 [28] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419 [29] Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602 [30] Yan J and Gao S W 2008 Phys. Rev. B 78 235413 [31] Zhao F, Cheng H H, Hu Y, Song L, Zhang Z P, Jiang L and Qu L T 2014 Sci. Rep. 4 5882 [32] Cheng Q, He Y, Ge Y L, Zhou J G and Song G W 2018 Microchim. Acta 185 332 [33] Nilius N, Wallis T M and Ho W 2002 Science 297 1853 [34] Mishchenko E G, Shytov A V and Silvestrov P G 2010 Phys. Rev. Lett. 104 156806 [35] Schwinghammer K, Tuffy B, Mesch M B, Wirnhier E, Martineau C, Taulelle F, Schnick W, Senker J and Lotsch B V 2013 Angew. Chem. Int. Ed. 52 2435 [36] Kobayashi Y, Fukui K I, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406 [37] Li H, Shao F Q, Huang H, Feng J J and Wang A J 2016 Sens. Actuators B Chem. 226 506 [38] Zhan Y, Liu Z M, Liu Q Q, Huang D, Wei Y, Hu Y C, Lian X J and Hu C F 2017 New J. Chem. 41 3930 [39] Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y and Liu R S 2016 Inorg. Chem. 55 10267 [40] Chan M H, Pan Y T, Lee I J, Chen C W, Chan Y C, Hsiao M, Wang F, Sun L D, Chen X Y and Liu R S 2017 Small 13 1700038 [41] Autere A, Jussila H, Dai Y Y, Wang Y D, Lipsanen H and Sun Z P 2018 Adv. Mater. 30 1705963 [42] Cavalleri A 2018 Science 362 525 [43] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A and Vardeny Z V 2015 Nat. Phys. 11 427 [44] Fan M Q, Li T, Li G Q, Zhao S Z, Yang K J, Zhang S Y, Zhang B T, Xu J Q and Krankel C 2017 Opt. Express 25 12796 [45] Anisimov S I, Kapeliovich B L and Perelman T L 1974 Sov. Phys. JETP 39 375 [46] Lin J H, Zhang H, Zhang B F, Zhao J M, Miyamoto Y and Cheng X L 2018 J. Phys. Chem. C 122 19992 [47] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345 [48] Tian N, Huang H W, Du X, Dong F and Zhang Y H 2019 J. Mater. Chem. A 7 11584 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|