Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047306    DOI: 10.1088/1674-1056/21/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Conductance of metallic nanoribbons with defects

Deng Shi-Xian(邓诗贤) and Liang Shi-Dong(梁世东)
State Key Laboratory of Optoelectronic Material and Technology and Guangdong Province Key Laboratory of Display Material and Technology, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The conductances of two typical metallic graphene nanoribbons with one and two defects are studied using the tight binding model with the surface Green's function method. The weak scattering impurities, U~1 eV, induce a dip in the conductance near the Fermi energy for the narrow zigzag graphene nanoribbons. As the impurity scattering strength increases, the conductance behavior at the Fermi energy becomes more complicated and depends on the impurity location, the AA and AB sites. The impurity effect then becomes weak and vanishes with the increase in the width of the zigzag graphene nanoribbons (150 nm). For the narrow armchair graphene nanoribbons, the conductance at the Fermi energy is suppressed by the impurities and becomes zero with the increase in impurity scattering strength, U >100 eV, for two impurities at the AA sites, but becomes constant for the two impurities at the AB sites. As the width of the graphene nanoribbons increases, the impurity effect on the conductance at the Fermi energy depends sensitively on the vacancy location at the AA or AB sites.
Keywords:  conductance      graphene nanoribbon      defects  
Received:  03 October 2011      Revised:  17 November 2011      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.80.Vp (Electronic transport in graphene)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10774194 and 51072236), the Elite Student Program from National Education Department, and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Liang Shi-Dong,stslsd@mail.sysu.edu.cn     E-mail:  stslsd@mail.sysu.edu.cn

Cite this article: 

Deng Shi-Xian(邓诗贤) and Liang Shi-Dong(梁世东) Conductance of metallic nanoribbons with defects 2012 Chin. Phys. B 21 047306

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 1
[2] Ando T 2007 Int. J. Mod. Phys. B 21 1113
[3] Hu H X, Zhang Z H, Liu X H, Qiu M and Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese)
[4] OuYang F P, Xu H and Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese)
[5] Ozyilmaz B, Jarillo-Herrero P, Efetov D and Kim P 2007 Appl. Phys. Lett. 91 192107
[6] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[7] Fujita M, Wakabyashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[8] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[9] Li T C and Lu S P 2008 Phys. Rev. B 77 085408
[10] Wakabayashi K 2004 J. Phys. Soc. Jpn. 72 998
[11] Bahamon D A, Pereira A L C and Schulz P A 2010 Phys. Rev. B 82 165438
[12] Xiong Y J and Kong X L 2010 Physica B 405 1690
[13] OuYang F P, Wang H Y, Li M J, Xiao J and Xu H 2008 Acta Phys. Sin. 57 7132 (in Chinese)
[14] OuYang F P, Wang X J, Zhang H, Xiao J, Chen L N and Xu H 2009 Acta Phys. Sin. 58 5640 (in Chinese)
[15] Chico L, Benedict L X, Louie S G and Cohen M L 1996 Phys. Rev. B 54 2600
[16] Datta S 1996 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[17] Wang L G, Zhang H Y, Wang C and Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese)
[18] Krompiewski S, Martinek J and Barnas J 2002 Phys. Rev. B 66 073412
[19] Song H F, Zhu J L and Xiong J J 2002 Phys. Rev. B 65 085408
[20] Kumazaki H and Hirashima D S 2008 Low Temp. Phys. 34 10
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[6] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[7] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[10] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[13] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
No Suggested Reading articles found!