CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors |
Zheng-Zhao Lin(林正兆)1, Ling Lü(吕玲)1,†, Xue-Feng Zheng(郑雪峰)1, Yan-Rong Cao(曹艳荣)2, Pei-Pei Hu(胡培培)3, Xin Fang(房鑫)1, and Xiao-Hua Ma(马晓华)1 |
1 School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China; 3 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China |
|
|
Abstract AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with heavy ions at various fluences. After irradiation by 2.1 GeV181 Ta32+ ions, the electrical characteristics of the devices significantly decreased. The threshold voltage shifted positively by approximately 25% and the saturation currents decreased by approximately 14%. Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites, which increased the gate current tunneling probability. According to the pulsed output characteristics, the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation. The time constants of the induced surface traps were mainly less than 10 μs.
|
Received: 02 June 2021
Revised: 02 July 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019 and 11690042) and Science Challenge Projects (Grant No. TZ2018004). |
Corresponding Authors:
Ling Lu
E-mail: llv@xidian.edu.cn
|
Cite this article:
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华) Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors 2022 Chin. Phys. B 31 036103
|
[1] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D:Appl. Phys. 51 163001 [2] Flack T J, Pushpakaran B N and Bayne S B 2016 J. Electron Mater. 45 2673 [3] Asif Khan M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214 [4] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334 [5] Baliga B J 2013 Semicond. Sci. Technol. 28 074011 [6] Ionascut-Nedelcescu A, Carlone C, Houdayer A, von Bardeleben H J, Cantin J L and Raymond S 2002 IEEE Trans. Nucl. Sci. 49 2733 [7] Nord J, Nordlund K and Keinonen J 2003 Phys. Rev. B 68 184104 [8] Pearton S J, Hwang Y S and Ren F 2015 JOM 67 1601 [9] Polyakov A Y, Perton S J, Frenzer P, Ren F, Liu L and Kim J 2013 J. Mater. Chem. C 1 877 [10] Luo B, Johnson J W, Ren F, Allume K K, Abernathy C R, Pearton S J, Wowchack A M, Polley C J, Chow P P, Schoenfeld D and Baca A G 2002 Appl. Phys. Lett. 80 604 [11] Hwang Y-S, Liu L, Ren F, Polyakov A Y, Smirnov N B, Govorkov A V, Kozhukhova E A, Kolin N G, Boiko V M, Vereyovkin S S, Ermakov V S, Lo C F, Laboutin O, Cao Y, Johnson J W, Kargin N I, Ryzhuk R V and Pearton S J 2013 J. Vac. Sci. Technol. B 31 022206 [12] Katz E J, Lin C H, Qiu J, Zhang Z, Mishra U K, Cao L and Brillson L J 2014 J. Appl. Phys. 115 123705 [13] Jiang R, Zhang E X, McCurdy M, Chen J, Shen X, Wang P, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S and Pantelides S T 2017 IEEE Trans. Nucl. Sci. 64 218 [14] Pearton S J, Ren F, Patrick E, Law M E and Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35 [15] Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P and Lee C 2015 IEEE Trans. Nucl. Sci. 62 2423 [16] Lei Z, Guo H, Tang M, Zeng C, Chen H and Zhang Z 2016 IEEE Proceedings of 16$th European Conference on Radiation and Its Effects on Components and Systems (RADECS), September 19-23, 2016, Bremen, Germany [17] Zerarka M, Austin P, Toulon G, Morancho F, Arbess H and Tasselli J 2012 IEEE Trans. Electron Dev. 59 3482 [18] Abbate C, Busatto G, Iannuzzo F, Mattiazzo S S, Sanseverino A, Silvestrin L, Tedesco D and Velardi F 2015 Microelectron. Reliab. 55 1496 [19] Kuboyama S, Maru A, Shindou H, Ikeda N, Hirao T, Abo H and Tamura T 2011 IEEE Trans. Nucl. Sci. 58 2734 [20] Stoffels S, Melotte M, Haussy M, Venegas R, Marcon D, Van Hove M and Decoutere S 2013 IEEE Trans. Nucl. Sci. 60 2712 [21] Samsel I K, Zhang E X, Hooten N C, Funkhouser E D, Bennet W G, Reed R A, Schrimpf R D, McCurdy M W, Fleetwood D M, Weller R A, Vizkelethy G, Sun X, Ma T P, Saadat O I and Palacios T 2013 IEEE Trans. Nucl. Sci. 60 4439 [22] Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P and Duhamel O 2009 IEEE Proceedings of RADECS European Conference on Radiation & Its Effects on Components & Systems, September 14-18, 2009, Brugge, Belgium, p. 623 [23] Lidow A, Nakata A, Rearwin M, Strydom J and Zafrani A M 2014 Radiation Effects Data Workshop IEEE, July 14-18, 2014, Paris, France [24] Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881 [25] Sasaki H, Hisaka T, Kadoiwa K, Oku T, Onoda S, Ohshima T, Taguchi E and Yasuda H 2018 Microelectron. Reliab. 81 312 [26] Chen S Y, Yu X, Lu W, Yao S and Guo Q 2020 Chin. Phys. Lett. 37 046101 [27] Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan L J, Li Z Z, Sun Y M and Ma X H 2018 Nucl. Instrum. Methods. Phys. Res. Sect. B 430 59 [28] Zerarka M, Austin P, Bensoussan A, Morancho F and Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242 [29] Vetury R, Zhang N Q Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 560 [30] Binari S C, Klein P B and Kazior T E 2002 Proc. IEEE 90 1048 [31] Joh J and Alamo J A del 2011 IEEE Trans. Electron Dev. 58 132 [32] Meneghesso G, Rampazzo F, Kordos P, Verzellesi G and Zanoni E 2006 IEEE Trans. Electron Dev. 53 2932 [33] Zhang A P, Rowland L B, Kaminsky E B, Tilak V, Grande J C, Teetsov J, Vertiatchikh A and Eastman L F 2003 J. Electron. Mater. 32 388 [34] Smigelskas A D and Kirkendall E O 1947 Trans. AIME 171 130 [35] Koehler A D, Specht P and Anderson T J 2014 IEEE Trans. Electron Dev. 35 1194 [36] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818 [37] Ghosh S, Das S, Dinara S M, Bag A, Chakraborty A, Mukhopadhyay P, Jana S K and Biswas D 2018 IEEE Trans. Electron Dev. 65 1333 [38] Augaudy S, Teyssier R P, Di Forte-Poisson M A, Cassette S, Dessertenne B and Delage S L 2001 IEEE MTT-S International Microwave Symposium Digest 1 427 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|