Special Issue:
SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
|
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices |
Prev
Next
|
|
|
Review of a direct epitaxial approach to achieving micro-LEDs |
Yuefei Cai(蔡月飞)1,†, Jie Bai(白洁)2, and Tao Wang(王涛)2,‡ |
1 Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom |
|
|
Abstract There is a significantly increasing demand of developing augmented reality and virtual reality (AR and VR) devices, where micro-LEDs (μLEDs) with a dimension of ≤ 5 μ m are the key elements. Typically, μLEDs are fabricated by dry-etching technologies, unavoidably leading to a severe degradation in optical performance as a result of dry-etching induced damages. This becomes a particularly severe issue when the dimension of LEDs is ≤ 10 μ m. In order to address the fundamental challenge, the Sheffield team has proposed and then developed a direct epitaxial approach to achieving μLEDs, where the dry-etching technologies for the formation of μLED mesas are not needed anymore. This paper provides a review on this technology and then demonstrates a number of monolithically integrated devices on a single chip using this technology.
|
Received: 30 July 2022
Revised: 30 August 2022
Accepted manuscript online: 09 September 2022
|
|
Fund: Project supported by the Engineering and Physical Sciences Research Council (EPSRC), U.K., via EP/P006973/1, EP/T013001/1, and EP/M015181/1. |
Corresponding Authors:
Yuefei Cai, Tao Wang
E-mail: caiyf@sustech.edu.cn;t.wang@sheffield.ac.uk
|
Cite this article:
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛) Review of a direct epitaxial approach to achieving micro-LEDs 2023 Chin. Phys. B 32 018508
|
[1] Lee V W, Twu N and Kymissis I 2016 J. Inf. Disp. 32 16 [2] Fan Z Y, Lin J Y and Jiang H X 2008 J. Phys. D 41 094001 [3] Templier F 2016 J. Soc. Inf. Disp. 24 669 [4] Day J, Li J, Lie D Y C, Bradford C, Lin J Y and Jiang H X 2011 Appl. Phys. Lett. 99 031116 [5] Green R P, McKendry J J D, Massoubre D, Gu E, Dawson M D and Kelly A E 2013 Appl. Phys. Lett. 102 091103 [6] Rajbhandari S, McKendry J J D, Herrnsdorf J, Chun H, Faulkner G, Haas H, Watson I M, O'Brien D and Dawson M D 2017 Semicond. Sci. Technol. 32 023001 [7] Ozden I, Diagne M, Nurmikko A V, Han J and Takeuchi T 2001 Phys. Status Solidi A 188 139 [8] Liu Z J, Wong K M, Keung C W, Tang C W and Lau K M 2009 IEEE J. Sel. Top. Quantum Electron. 15 4 [9] Otto I, Mounir C, Nirschl A, Pfeuffer A, Schapers Th, Schwarz U T and von Malm N 2015 Appl. Phys. Lett. 106 151108 [10] Li K H, Cheung Y F, Tang C W, Zhao C, Lau K M and Choi H W 2016 Phys. Status Solidi A 213 5 [11] Templier F, Dupre L, Tirano S, Marra M, Verney V, Olivier F, Aventurier B, Sarrasin D, Marion F, Catelain T, Berger F, Mathieu L, Dupont B and Gamarra P 2016 Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp. 47 1013 [12] Ploch N L, Rodriguez H, Stölmackerr C, Hoppe M, Lapeyrade M, Stell-mach J, Mehnke, F, Wernicke T, Knauer A, Kueller V, Weyers M, Ein-feldt S and Kneissl M 2013 IEEE Trans. Electron Devices 60 782 [13] Olivier F, Daami A, Licitra C and Templier F 2017 Appl. Phys. Lett. 111 022104 [14] Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S and DenBaars S P 2018 Opt. Express 26 21324 [15] Konoplev S S, Bulashevich K A and Karpov S Y 2018 Phys. Status Solidi A 215 1700508 [16] Yang C M, Kim D S, Park Y S, Lee J H, Lee Y S and Lee J H 2012 Opt. Photonics J. 2 185 [17] Zhang Y, Guo Y, Li Z, Wei T, Li J, Yi X and Wang G 2012 IEEE Photonics Technol. Lett. 24 4 [18] Zuo P, Zhao B, Yan S, Yue G, Yang H, Li Y, Wu H, Jiang Y, Jia H, Zhou J and Chen H 2016 Opt. Quantum Electron. 48 1 [19] Hwang D, Mughal A, Pynn C D, Nakamura S and DenBaars S P 2017 Appl. Phys. Express 10 032101 [20] Templier F, Benaïssa L, Aventurier B, Nardo C D, Charles M, Daami A, Henry F and Dupre L 2017 Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48 268 [21] El-Masry N A, Piner E L, Liu S X and Bedair S M 1998 Appl. Phys. Lett. 72 40 [22] Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906 [23] Inatomi Y, Kanagawa Y, Ito T and Suski T 2017 Jpn. J. Appl. Phys. 56 078003 [24] Wang T 2016 Semicond. Sci. Technol. 31 093003 [25] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M and Deatcher C J 2002 Appl. Phys. Lett. 80 3913 [26] Shimizu M, Kawaguchi Y, Hiramatsu K and Sawaki N 1997 Jpn. J. Appl. Phys. 36 3381 [27] Sonderegger S, Feltin E, Merano M, Crottini A, Carlin J F, Sachot R, Deveaud B, Grandjean N and Ganiere J D 2006 Appl. Phys. Lett. 89 232109 [28] Tawfik W Z, Hyun G Y, Ryu S W, Ha J S and Lee J K 2016 Opt. Mater. 55 17 [29] Iida D, Zhuang Z, Kirilenko P, Velazquez-Rizo M, Najmi M A and Ohkawaa K 2020 Appl. Phys. Lett. 116 162101 [30] Hwang J I, Hashimoto R, Saito S and Nunoue S 2014 Appl. Phys. Express 7 071003 [31] Hashimoto R, Hwang J, Saito S and Nunoue S 2014 Phys. Status Solidi C 11 628 [32] Zhuang Z, Iida D and Ohkawa K 2022 Jpn. J. Appl. Phys. 61 SA0809 [33] Bai J, Cai Y, Feng P, Fletcher P, Zhao X, Zhu C and Wang T 2020 ACS Photonics 7 411 [34] Bai J, Cai Y, Feng P, Fletcher P, Zhu C, Tian Y and Wang T 2020 ACS Nano 14 6906 [35] Martinez de Arriba G, Feng P, Xu C, Zhu C, Bai J and Wang T 2022 ACS Photonics 9 2073 [36] Feng P, Xu C, Bai J, Zhu C, Farrer I, Martinez de Arriba G and Wang T 2022 ACS Appl. Electron. Mater. 4 2787 [37] Esendag V, Bai J, Fletcher P, Feng P, Zhu C, Cai Y and Wang T 2021 Physica Status Solidi A 218 2100474 [38] Cai Y, Haggar J I H, Zhu C, Feng P, Bai J and Wang T 2021 ACS Appl. Electron. Mater. 3 445 [39] Cai Y, Zhu C, Zhong W, Feng P, Jiang S and Wang T 2021 Adv. Mater. Technol. 6 2100214 [40] Li P, Li H, Yang Y, Zhang H, Shapturenka P, Wong M, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 041102 [41] Li P, Li H, Zhang H, Yang Y, Wong M S, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 121102 [42] Horng R H, Ye C X, Chen P W, Iida D, Ohkawa K, Wu Y R and Wuu D S 2022 Sci. Rep. 12 1324 [43] Yu L, Wang L, Yang P, Hao Z, Yu J, Luo Y, Sun C, Xiong B, Han Y, Wang J, Li H and Wang L 2022 Opt. Mater. Express 12 3225 [44] Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek Jr R F and Chow T P 2013 Appl. Phys. Lett. 102 192107 [45] Liu Z, Huang T, Ma J, Liu C and Lau K M 2014 IEEE Electron Device Lett. 35 330 [46] Liu Z, Ma J, Huang T, Liu C and Lau K M 2014 Appl. Phys. Lett. 104 091103 [47] Liu C, Cai Y, Liu Z, Ma J and Lau K M 2015 Appl. Phys. Lett. 106 181110 [48] Cai Y, Zou X, Liu C and Lau K M 2017 IEEE Electron Device Lett. 39 224 [49] Yu L, Wang L, Hao Z, Luo Y, Sun C, Xiong B, Han Y, Wang J and Li H 2022 Semicond. Sci. Technol. 37 023001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|