Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 073201    DOI: 10.1088/1674-1056/20/7/073201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The influence of interface modifier on photodetachment of negative ions in an electric field near a metal surface

Huang Kai-Yun(黄凯云) and Wang De-Hua(王德华)
School of Physics, Ludong University, Yantai 264039, China
Abstract  Based on closed-orbit theory, the influence of an interface modifier on the photodetachment of H - in an electric field near a metal surface is studied. It is demonstrated that the interface strengthens the oscillations in the photodetachment cross section. However, when the electric field environments are different, the strengthening oscillations are caused by different sources. When the electric field direction is upward, the interface enhances the oscillations by shortening the period and the action of the closed orbit. When the electric field direction is downward, the interface strengthens the oscillations either by extending the coherent energy range or by increasing the total number of the closed orbits. We hope that our results will be conducive to the understanding of the photodetachment process of negative ions near interfaces, cavities and ion traps.
Keywords:  photodetachment      interface      closed orbit theory  
Received:  06 December 2010      Revised:  16 February 2011      Accepted manuscript online: 
PACS:  32.80.Gc (Photodetachment of atomic negative ions)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  03.65.Sq (Semiclassical theories and applications)  

Cite this article: 

Huang Kai-Yun(黄凯云) and Wang De-Hua(王德华) The influence of interface modifier on photodetachment of negative ions in an electric field near a metal surface 2011 Chin. Phys. B 20 073201

[1] Bergues B, Hultgren H and Kiyan I Y 2010 Phys. Rev. Lett. 104 103004
[2] Nienhaus H 2002 Surf. Sci. Rep. 45 1
[3] Echenique P M, Berndt R, Chulkov E V, Fauster T, Goldmann A and Höfer U 2004 Surf. Sci. Rep. 52 219
[4] Shimamoto S, Kasuya T, Kimura Y, Miyamoto N, Matsumoto Y and Wada M 2010 Rev. Sci. Instrum. 81 704
[5] Blondel C, Chaibi W, Delsart C and Drag C 2006 J. Mod. Opt. 53 2605
[6] Blondel C, Delsart C and Dulieu F 1996 Phys. Rev. Lett. 77 3755
[7] Bryant H C, Mohagheghi A, Stewart J E, Donahue J B, Quick C R, Reeder R A, Yuan V, Hummer C R, Smith W W, Cohen S, Reinhardt W P and Overman L 1987 Phys. Rev. Lett. 58 2412
[8] Du M L 1988 Phys. Rev. A 38 5609
[9] Peters A D and Delos J B 1993 Phys. Rev. A 47 3020
[10] Liu Z Y and Wang D H 1997 Phys. Lett. A 233 401
[11] Peters A D, Jaff'e C and Delos J B 1997 Phys. Rev. A 56 331
[12] Wahl P, Schneider M A, Diekhöner L, Vogelgesang R and Kern K 2003 Phys. Rev. Lett. 91 106802
[13] Wang D H, Tang T T and Wang S S 2010 J. Electron. Spectrosc. Relat. Phenom. 177 30
[14] Yang B C and Du M L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035002
[15] Huang K Y and Wang D H 2010 Chin. Phys. B 19 063402
[16] Huang K Y and Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese)
[17] Han Y, Wang L F, Ran S Y and Yang G C 2010 Physica B 405 3082
[18] Ganesan K and Taylor K T 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1293
[19] Rui K K and Yang G C 2009 Surf. Sci. 603 632
[20] Du M L and Delos J B 1987 Phys. Rev. Lett. 58 1731
[21] Du M L and Delos J B 1988 Phys. Rev. A 38 1896
[22] Zhao H J and Du M L 2009 Phys. Rev. A 79 023408
[23] Yang G C, Zheng Y Z and Chi X X 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1855
[24] S G I and M R I 1980 Tables of Integrals, Series and Products (New York: Academic Press) p. 266
[25] Knudson S K, Delos J B and Bloom B 1985 J. Chem. Phys. 83 5703
[26] Fano U and Rau A R P 1986 Atomic Collisions and Spectra (Orlando: Academic Press) p. 76
[27] Wang D H 2007 Eur. Phys. J. D 45 179
[28] Lloyd G R, Procter S R and Softley T P 2005 Phys. Rev. Lett. 95 133202
[29] Wethekam S, Mertens A and Winter H 2003 Phys. Rev. Lett. 90 037602
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[14] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!