Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127102    DOI: 10.1088/1674-1056/19/12/127102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and magnetocrystalline anisotropy energies of ordered Co1-xNix alloys: a first principles study

Zhang Sha(张莎), Pang Hua(庞华), Fang Yang(方阳), and Li Fa-Shen(李发伸)
Institute of Applied Magnetics, Lanzhou University, Lanzhou 730000, China
Abstract  The electronic structures and magnetocrystalline anisotropy (MA) of ordered hexagonal close-packed (hcp) Co1-xNix alloys are studied using the full-potential linear-augmented-plane-wave (FLAPW) method with generalized gradient approximation (GGA). Great changes of magnetocrystalline anisotropy energy (MAE) are gained with different Ni compositions. Also, in-plane magnetocrystalline anisotropy is obtained for Co15Ni in which the Snoek's limit is exceeded. It is found that the changes of the symmetry of the crystal field on Ni induce small variations in band structures around the Fermi level under different compositions, which plays an important role in modulating the magnetization direction, where the hybridization between Co-3d and Ni-3d orbits is of special importance in deciding the magnetocrystalline anisotropy of itinerant states. The rigid-band model is inapplicable to explain the evolution of magnetocrystalline anisotropy energy with Ni composition, and it is also inadequate to predict the magnetocrystalline anisotropy energy through the anisotropy of the orbital magnetic moment.
Keywords:  first principles      anisotropy      electronic structures  
Received:  17 May 2010      Revised:  18 June 2010      Accepted manuscript online: 
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.20.Be (Transition metals and alloys)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Gw (Magnetic anisotropy)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774061 and 10975066).

Cite this article: 

Zhang Sha(张莎), Pang Hua(庞华), Fang Yang(方阳), and Li Fa-Shen(李发伸) Electronic structures and magnetocrystalline anisotropy energies of ordered Co1-xNix alloys: a first principles study 2010 Chin. Phys. B 19 127102

[1] Hüfner S, Wertheim G K, Cohen R L and Wernick J H 1972 Phys. Rev. Lett. 28 488
[2] Hsieh H H, Chang Y K, Pong W F, Pieh J Y, Tseng P K, Sham T K, Coulthard I, Naftel S J, Lee J F, Chung S C and Tsang K L 1998 Phys. Rev. B 57 15204
[3] Zhu Q X, Pang H and Li F S 2009 Chin. Phys. B 18 2953
[4] Steinbeck L, Richter M and Eschrig H 2001 Phys. Rev. B 63 184431
[5] Wu D X, Zhang Q M, Liu J P, Yuan D W and Wu R Q 2008 Phys. Rev. Lett. 92 052503
[6] Burkert T, Eriksson O, James P, Simak S I, Johansson B and Nordström L 2004 Phys. Rev. B 69 104426
[7] Eastham D A, Denby P M, Harrison A, Kirkman I W and Whittaker A G 2002 J. Phys.: Condens. Matter 14 605
[8] Kuo C C, Lin W C, Chuang S F and Lin M T 2005 Surf. Sci. 576 76
[9] Burkert T, Eriksson O, Simak S I, Ruban A V, Sanyal B, Nordström L and Wills J M 2005 Phys. Rev. B 71 134411
[10] Ravindran P, Kjekshus A, Fjellvaag H, James P, Nordström L, Johansson B and Eriksson O 2001 Phys. Rev. B 63 144409
[11] Gambardella P, Rusponi S, Veronese M, Dhesi S S, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs P H, Kern K, Carbone C and Brune H 2003 Science 300 1130
[12] Aymard L, Dumont B and Viau G 1996 J. Alloys Compd. 242 108
[13] Turek I and Z'alve'ak T 2010 J. Phys.: Conference Series 200 052029
[14] Hara K, Itoh K, Kamiya M, Okamoto K, Hashimoto T and Fujiwara H 1991 J. Magn. Magn. Mater. 102 247
[15] Trygg J, Johansson B, Eriksson O and Wills J M 1995 Phys. Rev. Lett. 75 2871
[16] Enkovaara J, Ayuela A, Nordström L and Nieminen R M 2002 Phys. Rev. B 65 134422
[17] Galanakis I, Alouani M and Dreyssé H 2000 Phys. Rev. B 62 6475
[18] James P, Eriksson O, Hjortstam O, Johansson B and Nordström L 2000 Phys. Rev. Lett. 76 915
[19] Kakehashi Y and Hosohata O 1988 Journal de Physique Colloques 49 C8-73
[20] Daalderop G H O, Kelly P J and Schuurmans M F H 1990 Phys. Rev. B 41 11919
[21] Tung J C and Guo G Y 2007 Phys. Rev. B 76 094413
[22] Mokrousov Y, Bihlmayer G, Heinze S and Blügel S 2006 Phys. Rev. Lett. 96 147201
[23] Shick A B and Mryasov O N 2003 Phys. Rev. B 67 172407
[24] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[25] Wen F S, Qiao L, Zhou D, Zuo W L, Yi H B and Li F S 2008 Chin. Phys. B 17 2263
[26] Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T and Li F S 2010 J. Appl. Phys. 107 033913
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[13] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
No Suggested Reading articles found!