Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127101    DOI: 10.1088/1674-1056/19/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of disordering tendencies in Gd2B2O7 (B= Ti, Sn, Zr) compounds

Chen Zhong-Jun(陈中钧)a), and Tian Dong-Bin(田东斌)b)
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; b School of Microelectronic and Solid-state Electronics,University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  This paper performs the density functional theory calculations to obtain some factors influencing the response of pyrochlores Gd2B2O7 (B= Ti, Sn, Zr) to ion irradiation-induced amorphization. The 48f oxygen position parameter x, cohesive energy, bond type and defect-formation energy are discussed. The results show that parameter x can be used to indicate the disordering tendencies within a given pyrochlore family. Bond type, cohesive energy and defect-formation energies can be used to explain some experimental observations, but they are not determined exclusively by radiation ''resistance'' for a different pyrochlore family.
Keywords:  pyrochlores      density functional theory      disordering tendency      electronic properties  
Received:  09 May 2010      Revised:  07 July 2010      Accepted manuscript online: 
PACS:  61.72.J- (Point defects and defect clusters)  
  61.80.Jh (Ion radiation effects)  
  61.82.Ms (Insulators)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Ps (Other inorganic compounds)  

Cite this article: 

Chen Zhong-Jun(陈中钧), and Tian Dong-Bin(田东斌) First-principles study of disordering tendencies in Gd2B2O7 (B= Ti, Sn, Zr) compounds 2010 Chin. Phys. B 19 127101

[1] Wuensch B J, Eberman K W and Heremans C 2000 Solid State Ionics 129 111
[2] Yamaura J, Muraoka Y and Sakai F 2002 J. Phys. Chem. Solids 63 1027
[3] Park J K, Kim C H and Choi K J 2001 J. Mater. Res. 16 2568
[4] Gingras M J P, Hertog B C D and Faucher M 2000 Phys. Rev. B 62 6496
[5] Lumpkin G R, Smith K L and Blackford M G 2001 J. Nucl. Mater. 289 177
[6] Wang S X, Wang L M, Ewing R C and Kutty K V G 1999 Mater. Res. Soc. Symp. Proc. 540 355
[7] Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J and Kutty K V G 1999 J. Mater. Res. 14 4470
[8] Wang S X, Wang L M, Ewing R C, Was G S and Lumpkin G R 1999 Nucl. Instrum. Methods Phys. Res. B 148 704
[9] Begg B D, Hess N J, Weber W J, Devanathan R, Icenhower J P, Thevuthasan S and McGrail B P 2001 J. Nucl. Mater. 288 208
[10] Lian J, Wang L M, Ewing R C and Boatner L A 2005 Nucl. Instrum. Methods Phys. Res. B 241 365
[11] Lian J, Zu X T, Kutty K V G, Chen J, Wang L M and Ewing R C 2002 Phys. Rev. B 66 054108
[12] Lian J, Chen J, Wang L M, Ewing R C, Farmer J M, Boatner L A and Helean K B 2003 Phys. Rev. B 68 134107
[13] Lian J, Ewing R C, Wang L M and Helean K B 2004 J. Mater. Res. 19 1575
[14] Lian J, Wang L M, Haire R G, Helean K B and Ewing R C 2004 Nucl. Instrum. Methods Phys. Res. B 218 236
[15] Digeos A A, Valdez J A, Sickafus K E, Atio S, Grimes R W and Boccaccini A R 2003 J. Mater. Sci. 38 1597
[16] Weber W J 1998 J. Mater. Res. 13 1434
[17] Weber W J and Ewing R C 2000 Science 289 2051
[18] Lumpkina G R, Pruneda M, Rios S, Smith K L, Trachenko K, Whittle K R and Zaluzec N J 2007 J. Solid State Chem. 180 1512
[19] Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
[20] Weber W J, Wald J W and Matzke Hj 1985 Mater. Lett. 3 173
[21] Lian J, Helean K B, Kennedy B J, Wang L M, Navrotsky A and Ewing R C 2006 J. Phys. Chem. B 110 2343
[22] Jiang C, Stanek C R, Sickafus K E and Uberuaga B P 2009 Phys. Rev. B 79 104203
[23] Blochl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[26] Kresse G, Hafner J and Needs R J 1992 J. Phys.: Condens. Matter 4 7451
[27] Kennedy B J, Hunter B A and Howard C J 1997 J. Solid State Chem. 130 58
[28] Wilde P J and Catlow C R A 1998 Solid State Ionics 112 173
[29] Patwe S J and Tyagi A K 2006 Ceramics International 32 545
[30] Panero W R R, Stixrude L P and Ewing R C 2004 Phys. Rev. B 70 054110
[31] Minervini L and Grimes R W 2000 J. Am. Ceram. Soc. 83 1873
[32] Pirzada M 2003 Ph.D. Thesis (University of London)
[33] Wilde P J and Catlow C R A 1998 Solid State Ionics 112 185
[34] Chen Z J, Xiao H Y, Zu X T and Gao F 2008 J. Appl. Phys. 104 093702
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!