Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127103    DOI: 10.1088/1674-1056/19/12/127103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principle calculation of elastic and thermodynamic properties of stishovite

Liu Xun(刘勋)a)b), Zhou Xian-Ming(周显明)a)b)† , and Zeng Zhao-Yi(曾召益)b)
a Laboratory for Shockwave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  Using ab initio plane-wave pseudo-potential density functional theory method, the elastic constants and band structures of stishovite were calculated. The calculated elastic constants under ambient conditions agree well with previous experimental and theoretical data. C13, C33, C44, and C66 increase nearly linearly with pressure while C11 and C12 show irregularly changes with pressure over 20 GPa. The shear modulus (C11-C12)/2 was observed to decrease drastically between 40 GPa and 50 GPa, indicating acoustic mode softening in consistency with the phase transition to CaCl2-type structure around 50 GPa. The calculated band structures show no obvious difference at 0 and 80 GPa, being consistent with the high incompressibility of stishovite. With a quasi-harmonic Debye model, thermodynamic properties of stishovite were also calculated and the results are in good agreement with available experimental data.
Keywords:  first principle      elastic constants      thermal properties      quasi-harmonic Debye model  
Received:  01 February 2010      Revised:  07 April 2010      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  65.40.G- (Other thermodynamical quantities)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Ps (Other inorganic compounds)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the Science and Technology Foundation of the China Academy of Engineering Physics (Grant No. 2008B0101001).

Cite this article: 

Liu Xun(刘勋), Zhou Xian-Ming(周显明), and Zeng Zhao-Yi(曾召益) First principle calculation of elastic and thermodynamic properties of stishovite 2010 Chin. Phys. B 19 127103

[1] Shieh Sean R, Duffy Thomas S and Li Baosheng 2002 Phys. Rev. Lett. 89 255507
[2] Goresy A E, Dubrovinsky L, Sharp T G, Saxena S K and Chen M 2000 Science 288 1632
[3] Joswig W, Stachel T, Harris J, Baur W and Brey G 1999 Earth Planet. Sci. Lett. 173 1
[4] Shieh Sean R, Duffy Thomas S and Shen Guoyin 2005 Earth Planet. Sci. Lett. 235 273
[5] Luo Sheng-Nian, Swadener J G, Ma Chi and Tschauner Oliver 2007 Physica B 399 138
[6] Tschauner Oliver, Luo Sheng-Nian, Asimow Paul D and Ahrens Thomas J 2006 Am. Mineral. 91 1857
[7] Grimsditch M, Popova S, Brazhkin V V and Voloshin R N 1994 Phys. Rev. B 50 12984
[8] Rudra Jayanta Kumar and Fowler W Beall 1983 Phys. Rev. B 28 1061
[9] Keskar Nitin R, Troullier N, Martins José Lu'his and Chelikowsky James R 1991 Phys. Rev. B 44 4081
[10] Karki B B, Warren M C, Stixrude L, Ackland G J and Crain J 1997 Phys. Rev. B 55 3465
[11] Akins Joseph A and Ahrens Thomas J 2002 J. Geophys. Lett. 29 101394
[12] Panero Wendy R, Benedetti Laura Robin and Jeanloz Raymond 2003 J. Geophys. Res. 108 (B1) 2015
[13] Luo Sheng-Nian, Mosenfelder J L, Asimow P D and Ahrens Thomas J 2002 J. Geophys. Lett. 29 1691
[14] Ottonello G, Zuccolini M Vetuschi and Civalleri B 2009 Calphad. 33 457
[15] Lee Changyol 1996 Phys. Rev. B 54 8973
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Gerperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[18] Pfrommer B G, Coté M, Louie S G and Cohen M L 1997 J. Comp. Physiol. 131 233
[19] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[20] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[21] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[22] Zhu J, Yu J X, Wang Y J, Chen X R and Jing F Q 2008 Chin. Phys. B 17 2216
[23] Li X F, Peng W M, Shen X M, Ji G F and Zhao F 2009 Acta Phys. Sin. 58 2660 ( in Chinese)
[24] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 269
[25] Chen D, Chen J D, Zhao L H, Wang C L, Yu B H and Shi D H 2009 Chin. Phys. B 18 738
[26] Xu G L, Chen J D, Chen D, Ma J Z, Yu B H and Shi D H 2009 Chin. Phys. B 18 744
[27] Zhang W, Cheng Y, Zhu J and Chen X R 2009 Chin. Phys. B 18 1207
[28] Blanco M A, Francisco E and Lua na V 2004 Comput. Phys. Commun. 57 157
[29] Dewhurst J K, Lowther J E and Madzwara L T 1997 Phys. Rev. B 55 11003,
[30] Hubertus Giefers and Felix Porsch 2007 Physica B 400 53
[31] Jiang F M, Gwanmesia G D, Dyuzheva T I and Duffy T S 2009 Phys. Earth Planet. Inter. 172 235
[32] Andrault D, Angel R J, Mosenfelder J L and Bihan T Le 2003 Am. Mineral. 88 301
[33] Yu Nishihara, Keisuke Nakayama, Eiichi Takahashi, Tomohiro Iguchi and Ken-`hichi Funakoshi 2005 Phys. Chem. Mine. 31 660
[34] Li B S, Rigden S M and Liebermann R C 1996 Phys. Earth Planet. Inter. 96 113
[35] Cohen Ronald E 1991 Am. Mineral. 76 733
[36] Brazhkin V V, McNeil L E, Grimsditch M, Bendeliani N A, Dyuzheva T I and Lityagina L M 2005 J. Phys.: Condense Matter 17 1869
[37] Yamanaka T, Fukuda T and Tsuchiya J 2002 Phys. Chem. Miner. 29 633
[38] Karki B B, Stixrude L and Crain J 1997 Geophys. Res. Lett. 24 3269
[39] Bengt Holm and Rajeev Ahuja 1999 J. Chem. Phys. 111 2071
[40] Fahey S, Chang K J, Louis S G and Cohen M L 1987 Phys. Rev. B 35 5856
[41] Ito H, Kawada K and Akimoto S 1974 Phys. Earth Planet. Inter. 8 277
[42] Doroshev A M, Galkin V M and Kuznesov G N 1988 Geochem. Int. 25 92
[43] Weaver J S, Takahashi T and Bassett W A 1973 Trans. Am. Geophys. Union 54 475
[44] Endo S, Aki T, Akahama Y, Wakatsuki M, Nakamura T, Tomii Y, Koto K, Ito Y and Tokonami M 1986 Phys. Chem. Miner. 13 146
[45] Kieffer S W 1979 Rev. Geophys. Space Phys. 17 1
[46] Kaichi Suito, Makoto Miyoshi, Akifumi Onodera, Osamu Shimomura and Takumi Kikegawa 1996 Phys. Earth Planet. Inter. 93 215
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[9] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[10] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[11] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[12] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[13] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[14] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[15] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
No Suggested Reading articles found!