Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 026104    DOI: 10.1088/1674-1056/ac11db

A new direct band gap silicon allotrope o-Si32

Xin-Chao Yang(杨鑫超)1, Qun Wei(魏群)1,†, Mei-Guang Zhang(张美光)2, Ming-Wei Hu(胡明玮)1, Lin-Qian Li(李林茜)1, and Xuan-Min Zhu(朱轩民)3,‡
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China;
3 School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
Abstract  Silicon is a preferred material in solar cells, and most of silicon allotropes have an indirect band gap. Therefore, it is important to find new direct band gap silicon. In the present work, a new direct band gap silicon allotrope of o-Si32 is discovered. The elastic constants, elastic anisotropy, phonon spectra, and electronic structure of o-Si32 are obtained using first-principles calculations. The results show that o-Si32 is mechanically and dynamically stable and is a direct semiconductor material with a band gap of 1.261 eV.
Keywords:  first-principles calculation      elastic anisotropy      silicon  
Received:  28 April 2021      Revised:  20 June 2021      Accepted manuscript online:  07 July 2021
PACS:  61.82.Fk (Semiconductors)  
  62.20.-x (Mechanical properties of solids)  
  61.72.uf (Ge and Si)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965005 and 11964026), the 111 Project, China (Grant No. B17035), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2020JM-186 and 2020JM-621), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Qun Wei, Xuan-Min Zhu     E-mail:;

Cite this article: 

Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民) A new direct band gap silicon allotrope o-Si32 2022 Chin. Phys. B 31 026104

[1] Hybertsen M S and Louie S G 1985 Phys. Rev. Lett. 55 1418
[2] Besson J M, Mokhtari E H, Gonzalez J and Weill G 1987 Phys. Rev. Lett. 59 473
[3] Jelle B P, Breivik C and Rokenes H D 2012 Sol. Energy Mater. Sol. Cells. 100 69
[4] De A and Pryor C E 2014 J. Phys.:Condens. Matter 26 045801
[5] Zhao Z, Tian F, Dong X, Li Q, Wang Q, Wang H, Zhong X, Xu B, Yu D, He J, Wang H T, Ma Y and Tian Y 2012 J. Am. Chem. Soc. 134 12362
[6] Fan Q, Chai C, Wei Q, Yan H, Bo Y, Yang Y, Yu X, Liu Y, Xing M, Zhang J and Yao R 2015 J. Appl. Phys. 118 185704
[7] Xiang H J, Huang B, Kan E, Wei S H and Gong X G 2013 Phys. Rev. Lett. 110 118702
[8] Oh Y J, Lee I H, Kim S, Lee J and Chang K J 2015 Sci. Rep. 5 18086
[9] Fan Q, Wang H, Zhang W, Wei M, Song Y, Zhang W and Yun S 2019 Curr. Appl. Phys. 19 1325
[10] Amsler M, Botti S, Marques M A L, Lenosky T J and Goedecker S 2015 Phys. Rev. B 92 014101
[11] Wang Q, Xu B, Sun J, Liu H, Zhao Z, Yu D, Fan C and He J 2014 J. Am. Chem. Soc. 136 9826
[12] Botti S, Flores-Livas J A, Amsler M, Goedecker S and Marques M A L 2102 Phys. Rev. B 86 121204
[13] Fan Q, Chai C, Wei Q and Yang Y 2016 Phys. Chem. Chem. Phys. 18 12905
[14] Guo Y, Wang Q, Kawazoe Y and Jena P 2015 Sci. Rep. 5 14342
[15] Wei Q, Tong W, Wei B, Zhang M and Peng X 2019 Phys. Chem. Chem. Phys. 21 19963
[16] Wei Q, Yang X, Hu M, Yan H, Tong W, Yang R, Zhang M, Zhu X and Zhang R 2020 Chin. J. Phys. 68 778
[17] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[18] Kohn W and Sham L J 1965 Phys. Rev. B 140 A1133
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[20] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[24] Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906
[25] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[26] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[27] Wei Q, Yang X, Wei B, Hu M, Tong W, Yang R, Yan H, Zhang M, Zhu X and Yao R 2020 Solid State Commun. 319 113994
[28] Hill R 1952 Proc. Phys. Soc. A 65 349
[29] Yang X, Wei Q, Wei B, Yan Y, Yang R, Zhang M, Chen Q, Wang X, Yao R, Zhao C and Ding C 2019 Acta Phys. Pol. A 136 940
[30] Wei Q, Zhao C, Zhang M, Yan H, Zhou Y and Yao R 2018 Phys. Lett. A 382 1685
[31] Pugh S F 1954 Lond. Edinb. Dubl. Phil. Mag. 45 823
[32] Cao A H, Zhao W J, Zhou Q Y, Liu S L and Gan L H 2019 Chem. Phys. Lett. 714 119
[33] Qiu S, Clausen B, Padula S A, Noebe R D and Vaidyanathan R 2011 Acta Mater. 59 5055
[34] Fan Q, Wei Q, Chai C, Zhang M, Yan H, Zhang Z, Zhang J and Zhang D 2015 Comput. Mater. Sci. 97 6
[35] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[12] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!