Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036301    DOI: 10.1088/1674-1056/ac11e6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Boron at tera-Pascal pressures

Peiju Hu(胡佩菊)1,†, Junhao Peng(彭俊豪)1,†, Xing Xie(谢兴)1, Minru Wen(文敏儒)1, Xin Zhang(张欣)1, Fugen Wu(吴福根)2, and Huafeng Dong(董华锋)1,3,‡
1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
3 Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
Abstract  The study of boron structure is fascinating because boron has various allotropes containing boron icosahedrons under pressure. Here, we propose a new boron structure (space group $Fm\overline{3}m$) that is dynamically stable at 1.4 tera-Pascal (TPa) using density functional theory and an evolutionary algorithm. The unit cell of this structure can be viewed as a structure with a boron atom embedded in the icosahedron. This structure behaves as a metal, and cannot be stable under ambient pressure. Furthermore, we found electrons gather in lattice interstices, which is similar to that of the semiconductor Na or Ca$_{2}$N-II under high pressure. The discovery of this new structure expands our comprehension of high-pressure condensed matter and contributes to the further development of high-pressure science.
Keywords:  boron      high-pressure prediction      first principles      USPEX  
Received:  27 May 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  63.20.dk (First-principles theory)  
  62.50.-p (High-pressure effects in solids and liquids)  
  64.70.-p (Specific phase transitions)  
Fund: Project supported by the Guangdong Natural Science Foundation of China (Grant Nos. 2017B030306003 and 2019B1515120078) and the National Natural Science Foundation of China (Grant No. 11804057).
Corresponding Authors:  Huafeng Dong     E-mail:  hfdong@gdut.edu.cn

Cite this article: 

Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋) Boron at tera-Pascal pressures 2022 Chin. Phys. B 31 036301

[1] Shirai K 2017 Jpn. J. Appl. Phys. 56 05FA06
[2] Douglas B and Ho S M 2006 Structure and Chemistry of Crystalline Solids (New York:Springer)
[3] He X L, Shao X, Chen T, Tai Y K, Weng X J, Chen Q, Dong X, Gao G Y, Sun J, Zhou X F, Tian Y J and Wang H T 2019 Phys. Rev. B 99 184111
[4] Mccarty L V, Kasper J S, Horn F H, Decker B F and Newkirk A E 1958 J. Am. Chem. Soc. 80 2592
[5] Decker B F and Kasper J S 1959 Acta Cryst. 12 503
[6] Hughes R E, Kennard C H L, Sullenger D B, Weakliem H A and Hoard J L 1963 J. Am. Chem. Soc. 85 361
[7] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[8] Vlasse M, Naslain R, Kasper J S and Ploog K 1979 J. Solid State Chem. 28 289
[9] Shirai K, Dekura H and Yanase A 2009 J. Phys. Soc. Jpn. 78 084714
[10] Eremets M I, Struzhkin V V, Mao H K and Hemley R J 2001 Science 293 272
[11] Oganov A R and Solozhenko V L 2009 J. Superhard Mater. 31 285
[12] Shirai K 1997 Phys. Rev. B 55 12235
[13] Gerashenko A P, Mikhalev K N and Verkhovskii S V 2001 Appl. Magn. Reson. 21 157
[14] He X L, Dong X, Wu Q S, Zhao Z S, Zhu Q, Oganov A R, Tian Y J, Yu D L, Zhou X F and Wang H T 2018 Phys. Rev. B 97 100102
[15] Parakhonskiy G, Dubrovinskaia N, Bykova E, Wirth R and Dubrovinsky L 2013 High Pressure Res. 33 673
[16] Chuvashova I, Bykova E and Bykov M 2017 Phys. Rev. B 95 180102
[17] Pickard C J and Needs R J 2011 J. Phys. Condens. Matt. 23 053201
[18] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713
[19] Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Rev. Mineral. Geochem. 71 271
[20] Zhu Q, Li L, Oganov A R and Allen P B 2013 Phys. Rev. B 87 195317
[21] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[22] Wang Y C, Tian F B, Li D, Duan D F, Xie H, Liu B B, Zhou Q and Cui T 2019 Chin. Phys. B 28 056104
[23] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konopkova Z, Popov I A, Boldyrev A I and Wang H T 2017 Nat. Chem. 9 440
[24] Wen M R, Xie X, Xie Z X, Dong H F, Zhang X, Wu F G and Wang C Y 2021 Chin. Phys. B 30 016403
[25] Krese G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[26] Wang H B, Zhang L and Duan J 2019 Chin. Phys. B 28 116201
[27] Yang R P, Lin S X, Fang X G, Qin M H, Gao X S, Zeng M and Liu J M 2014 Chin. Phys. B 23 067102
[28] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[29] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[30] Blochl P E 1994 Phys. Rev. B 50 17953
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[33] Haussermann U, Simak S I, Ahuja R and Johansson B 2003 Phys. Rev. Lett. 90 065701
[34] Masago A, Shirai K and Katayama-Yoshida H 2006 Phys. Rev. B 73 104102
[35] Shirai K, Dekura H, Mori Y, Fujii Y, Hyodo H and Kimura K 2011 J. Phys. Soc. Jpn. 80 084601
[36] Zhang Y W, Wu W K, Wang Y C, Yang S Y A and Ma Y M 2017 J. Am. Chem. Soc. 139 13798
[37] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[38] Neaton J B and Ashcroft N W 1999 Nature 400 141
[39] Dekura H, Shirai K and Yanase A 2010 J. Phys. Conf. Ser. 215 012117
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[6] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[7] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[8] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[9] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[10] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[11] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[12] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[13] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[14] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[15] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
No Suggested Reading articles found!