1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 3 Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
Abstract The study of boron structure is fascinating because boron has various allotropes containing boron icosahedrons under pressure. Here, we propose a new boron structure (space group ) that is dynamically stable at 1.4 tera-Pascal (TPa) using density functional theory and an evolutionary algorithm. The unit cell of this structure can be viewed as a structure with a boron atom embedded in the icosahedron. This structure behaves as a metal, and cannot be stable under ambient pressure. Furthermore, we found electrons gather in lattice interstices, which is similar to that of the semiconductor Na or CaN-II under high pressure. The discovery of this new structure expands our comprehension of high-pressure condensed matter and contributes to the further development of high-pressure science.
Fund: Project supported by the Guangdong Natural Science Foundation of China (Grant Nos. 2017B030306003 and 2019B1515120078) and the National Natural Science Foundation of China (Grant No. 11804057).
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋) Boron at tera-Pascal pressures 2022 Chin. Phys. B 31 036301
[1] Shirai K 2017 Jpn. J. Appl. Phys.56 05FA06 [2] Douglas B and Ho S M 2006 Structure and Chemistry of Crystalline Solids (New York:Springer) [3] He X L, Shao X, Chen T, Tai Y K, Weng X J, Chen Q, Dong X, Gao G Y, Sun J, Zhou X F, Tian Y J and Wang H T 2019 Phys. Rev. B99 184111 [4] Mccarty L V, Kasper J S, Horn F H, Decker B F and Newkirk A E 1958 J. Am. Chem. Soc.80 2592 [5] Decker B F and Kasper J S 1959 Acta Cryst.12 503 [6] Hughes R E, Kennard C H L, Sullenger D B, Weakliem H A and Hoard J L 1963 J. Am. Chem. Soc.85 361 [7] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature457 863 [8] Vlasse M, Naslain R, Kasper J S and Ploog K 1979 J. Solid State Chem.28 289 [9] Shirai K, Dekura H and Yanase A 2009 J. Phys. Soc. Jpn.78 084714 [10] Eremets M I, Struzhkin V V, Mao H K and Hemley R J 2001 Science293 272 [11] Oganov A R and Solozhenko V L 2009 J. Superhard Mater.31 285 [12] Shirai K 1997 Phys. Rev. B55 12235 [13] Gerashenko A P, Mikhalev K N and Verkhovskii S V 2001 Appl. Magn. Reson.21 157 [14] He X L, Dong X, Wu Q S, Zhao Z S, Zhu Q, Oganov A R, Tian Y J, Yu D L, Zhou X F and Wang H T 2018 Phys. Rev. B97 100102 [15] Parakhonskiy G, Dubrovinskaia N, Bykova E, Wirth R and Dubrovinsky L 2013 High Pressure Res.33 673 [16] Chuvashova I, Bykova E and Bykov M 2017 Phys. Rev. B95 180102 [17] Pickard C J and Needs R J 2011 J. Phys. Condens. Matt.23 053201 [18] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun.175 713 [19] Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Rev. Mineral. Geochem.71 271 [20] Zhu Q, Li L, Oganov A R and Allen P B 2013 Phys. Rev. B87 195317 [21] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res.44 227 [22] Wang Y C, Tian F B, Li D, Duan D F, Xie H, Liu B B, Zhou Q and Cui T 2019 Chin. Phys. B28 056104 [23] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konopkova Z, Popov I A, Boldyrev A I and Wang H T 2017 Nat. Chem.9 440 [24] Wen M R, Xie X, Xie Z X, Dong H F, Zhang X, Wu F G and Wang C Y 2021 Chin. Phys. B30 016403 [25] Krese G and Furthmuller J 1996 Comput. Mater. Sci.6 15 [26] Wang H B, Zhang L and Duan J 2019 Chin. Phys. B28 116201 [27] Yang R P, Lin S X, Fang X G, Qin M H, Gao X S, Zeng M and Liu J M 2014 Chin. Phys. B23 067102 [28] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett.58 1861 [29] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys.73 515 [30] Blochl P E 1994 Phys. Rev. B50 17953 [31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B78 134106 [32] Momma K and Izumi F 2011 J. Appl. Crystallogr.44 1272 [33] Haussermann U, Simak S I, Ahuja R and Johansson B 2003 Phys. Rev. Lett.90 065701 [34] Masago A, Shirai K and Katayama-Yoshida H 2006 Phys. Rev. B73 104102 [35] Shirai K, Dekura H, Mori Y, Fujii Y, Hyodo H and Kimura K 2011 J. Phys. Soc. Jpn.80 084601 [36] Zhang Y W, Wu W K, Wang Y C, Yang S Y A and Ma Y M 2017 J. Am. Chem. Soc.139 13798 [37] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature458 182 [38] Neaton J B and Ashcroft N W 1999 Nature400 141 [39] Dekura H, Shirai K and Yanase A 2010 J. Phys. Conf. Ser.215 012117
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.