Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文)1,2, Hong Zhang(张红)1,2,†, and Xinlu Cheng(程新路)3
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China; 3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract The lead-free perovskites Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) as the popular photoelectric materials have excellent optical properties with lower toxicity. In this study, we systematically investigate the stable monolayer Cs3B2X9 and bilayer vertical heterostructure Cs3B2X9//Cs3B2'X9 (B, B'=Sb, Bi; X=Cl, Br, I) via first-principles simulations. By exploring the electrical structures and band edge positions, we find the band gap reduction and the band type transition in the heterostructure Cs3B2X9//Cs3B2'X9 due to the charge transfer between layers. Furthermore, the results of optical properties reveal light absorption from the visible light to UV region, especially monolayer Cs3Sb2I9 and heterostructure Cs3Sb2I9/Cs3Bi2I9, which have absorption peaks in the visible light region, leading to the possibility of photocatalytic water splitting. These results provide insights for more two-dimensional semiconductors applied in the optoelectronic and photocatalytic fields.
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253), and the Science Specialty Program of Sichuan University (Grand No. 2020SCUNL210).
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
Cite this article:
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路) Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I) 2022 Chin. Phys. B 31 027102
[1] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O and Neilson J R 2016 J. Am. Chem. Soc.138 8453 [2] Ke W and Kanatzidis M G 2019 Nat. Commun.10 965 [3] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc.138 2138 [4] Liu Y L, Yang C L, Wang M S, Ma X G and Yi Y G 2018 J. Mater. Sci.54 4732 [5] Luo J, Wang X, Li S, et al. 2018 Nature563 541 [6] Liu C, Wang Y, Geng H, Zhu T, Ertekin E, Gosztola D, Yang S, Huang J, Yang B, Han K, Canton S E, Kong Q, Zheng K and Zhang X 2019 J. Am. Chem. Soc.141 13074 [7] El Ajjouri Y, Chirvony V S, Vassilyeva N, Sessolo M, Palazon F and Bolink H J 2019 J. Mater. Chem. C7 6236 [8] Li H, Luo T, Zhang S, Sun Z, He X, Zhang W and Chang H 2020 Energy Environ. Mater.4 46 [9] Harikesh P C, Mulmudi H K, Ghosh B, Goh T W, Teng Y T, Thirumal K, Lockrey M, Weber K, Koh T M, Li S, Mhaisalkar S and Mathews N 2016 Chem. Mater.28 7496 [10] Mao L, Stoumpos C C and Kanatzidis M G 2019 J. Am. Chem. Soc.141 1171 [11] Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Gr?tzel M, Mhaisalkar S, Soci C and Mathews N 2016 Inorg. Chem.55 1044 [12] Liu Q, Lin S Y, Mao W M, Chun L, Dan X, Ming D L and Gaoquan S 2018 Nanoscale10 6837 [13] Chen F, Zhen W H, Xi S Z, Zhi S H, Shuai W, Qi M J, Jun W, Mei L H and Hui L D 2019 ACS Appl. Mater. Interfaces11 8419 [14] Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D and Haque S A 2017 ACS Energy Lett.2 1662 [15] Pan L Y, Ding Y F, Yu Z L, Wan Q, Liu B and Cai M Q 2020 J. Power Sources451 227732 [16] Kim S Y, Yun Y, Shin S, Lee J H, Heo Y W and Lee S 2019 Scr. Mater.166 107 [17] Geng T, Wei S, Zhao W, Ma Z, Fu R, Xiao G and Zou B 2021 Inorg. Chem. Front.8 1410 [18] Liu Z L, Liu R R, Mu Y F, Feng Y X, Dong G X, Zhang M and Lu T B 2021 Solar RRL5 2000691 [19] Hu W, He X, Fang Z, Lian W, Shang Y, Li X, Zhou W, Zhang M, Chen T, Lu Y, Zhang L, Ding L and Yang S 2020 Nano Energy68 104362 [20] Sarkar A, Acharyya P, Sasmal R, Pal P, Agasti S S and Biswas K 2018 Inorg. Chem.57 15558 [21] D S M, D L P J, J P M, J P C, J H P, J C S and C P M 2002 J. Phys.:Condens. Matter14 2717 [22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [23] Baroni S, Gironcoli S D and Corso A D 2001 Rev. Mod. Phys.73 515 [24] Le Bahers T, Rérat M and Sautet P 2014 J. Phys. Chem. C118 5997 [25] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys.132 154104 [26] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [27] Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H and He Z B 2019 J. Mater. Chem. A7 8818 [28] Xiao Z W, Meng W W, Wang J B, Mitzi D B and Yan Y F 2017 Mater. Horiz.4 206 [29] Kudo A and Miseki Y 2009 Chem. Soc. Rev.38 253 [30] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett.15 2794 [31] Wang Z, Altmann P, Gadermaier C, Yang Y, Li W, Ghirardini L, Trovatello C, Finazzi M, Duó L, Celebrano M, Long R, Akinwande D, Prezhdo O V, Cerullo G and Dal Conte S 2021 Nano Lett.21 2165 [32] Li P F and Wang Z W 2018 J. Appl. Phys.123 204308
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.