Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027102    DOI: 10.1088/1674-1056/ac2e5f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)

Yaowen Long(龙耀文)1,2, Hong Zhang(张红)1,2,†, and Xinlu Cheng(程新路)3
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China;
3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  The lead-free perovskites Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) as the popular photoelectric materials have excellent optical properties with lower toxicity. In this study, we systematically investigate the stable monolayer Cs3B2X9 and bilayer vertical heterostructure Cs3B2X9//Cs3B2'X9 (B, B'=Sb, Bi; X=Cl, Br, I) via first-principles simulations. By exploring the electrical structures and band edge positions, we find the band gap reduction and the band type transition in the heterostructure Cs3B2X9//Cs3B2'X9 due to the charge transfer between layers. Furthermore, the results of optical properties reveal light absorption from the visible light to UV region, especially monolayer Cs3Sb2I9 and heterostructure Cs3Sb2I9/Cs3Bi2I9, which have absorption peaks in the visible light region, leading to the possibility of photocatalytic water splitting. These results provide insights for more two-dimensional semiconductors applied in the optoelectronic and photocatalytic fields.
Keywords:  first principles simulations      lead-free perovskite      monolayer Cs3B2X9      vertical heterostructure Cs3B2X9//Cs3B2'X9      photoelectric materials  
Received:  17 August 2021      Revised:  18 September 2021      Accepted manuscript online:  11 October 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  31.15.A- (Ab initio calculations)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253), and the Science Specialty Program of Sichuan University (Grand No. 2020SCUNL210).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路) Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I) 2022 Chin. Phys. B 31 027102

[1] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O and Neilson J R 2016 J. Am. Chem. Soc. 138 8453
[2] Ke W and Kanatzidis M G 2019 Nat. Commun. 10 965
[3] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138
[4] Liu Y L, Yang C L, Wang M S, Ma X G and Yi Y G 2018 J. Mater. Sci. 54 4732
[5] Luo J, Wang X, Li S, et al. 2018 Nature 563 541
[6] Liu C, Wang Y, Geng H, Zhu T, Ertekin E, Gosztola D, Yang S, Huang J, Yang B, Han K, Canton S E, Kong Q, Zheng K and Zhang X 2019 J. Am. Chem. Soc. 141 13074
[7] El Ajjouri Y, Chirvony V S, Vassilyeva N, Sessolo M, Palazon F and Bolink H J 2019 J. Mater. Chem. C 7 6236
[8] Li H, Luo T, Zhang S, Sun Z, He X, Zhang W and Chang H 2020 Energy Environ. Mater. 4 46
[9] Harikesh P C, Mulmudi H K, Ghosh B, Goh T W, Teng Y T, Thirumal K, Lockrey M, Weber K, Koh T M, Li S, Mhaisalkar S and Mathews N 2016 Chem. Mater. 28 7496
[10] Mao L, Stoumpos C C and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171
[11] Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Gr?tzel M, Mhaisalkar S, Soci C and Mathews N 2016 Inorg. Chem. 55 1044
[12] Liu Q, Lin S Y, Mao W M, Chun L, Dan X, Ming D L and Gaoquan S 2018 Nanoscale 10 6837
[13] Chen F, Zhen W H, Xi S Z, Zhi S H, Shuai W, Qi M J, Jun W, Mei L H and Hui L D 2019 ACS Appl. Mater. Interfaces 11 8419
[14] Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D and Haque S A 2017 ACS Energy Lett. 2 1662
[15] Pan L Y, Ding Y F, Yu Z L, Wan Q, Liu B and Cai M Q 2020 J. Power Sources 451 227732
[16] Kim S Y, Yun Y, Shin S, Lee J H, Heo Y W and Lee S 2019 Scr. Mater. 166 107
[17] Geng T, Wei S, Zhao W, Ma Z, Fu R, Xiao G and Zou B 2021 Inorg. Chem. Front. 8 1410
[18] Liu Z L, Liu R R, Mu Y F, Feng Y X, Dong G X, Zhang M and Lu T B 2021 Solar RRL 5 2000691
[19] Hu W, He X, Fang Z, Lian W, Shang Y, Li X, Zhou W, Zhang M, Chen T, Lu Y, Zhang L, Ding L and Yang S 2020 Nano Energy 68 104362
[20] Sarkar A, Acharyya P, Sasmal R, Pal P, Agasti S S and Biswas K 2018 Inorg. Chem. 57 15558
[21] D S M, D L P J, J P M, J P C, J H P, J C S and C P M 2002 J. Phys.:Condens. Matter 14 2717
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Baroni S, Gironcoli S D and Corso A D 2001 Rev. Mod. Phys. 73 515
[24] Le Bahers T, Rérat M and Sautet P 2014 J. Phys. Chem. C 118 5997
[25] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H and He Z B 2019 J. Mater. Chem. A 7 8818
[28] Xiao Z W, Meng W W, Wang J B, Mitzi D B and Yan Y F 2017 Mater. Horiz. 4 206
[29] Kudo A and Miseki Y 2009 Chem. Soc. Rev. 38 253
[30] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett. 15 2794
[31] Wang Z, Altmann P, Gadermaier C, Yang Y, Li W, Ghirardini L, Trovatello C, Finazzi M, Duó L, Celebrano M, Long R, Akinwande D, Prezhdo O V, Cerullo G and Dal Conte S 2021 Nano Lett. 21 2165
[32] Li P F and Wang Z W 2018 J. Appl. Phys. 123 204308
[1] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[2] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[8] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[9] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[10] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[11] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[12] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[13] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!