Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 056201    DOI: 10.1088/1674-1056/24/5/056201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterization of CoPt nanowire fabricated by glancing angle deposition

Satoshi Kitai (锻代聪)a b, Zhang Zheng-Jun (张政军)a, Shi Ji (史蹟)b, Yoshio Nakamura (中村吉男)b
a School of Materials Science and Engineering, Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China;
b Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Abstract  CoPt and Co nanowire films were deposited by the Glancing Angle Deposition (GLAD) method. All samples are deposited on Si substrates that were covered by polystyrene spheres to assist the alignment of nanowires. SEM observation results show that the length and diameter of nanowires are uniform for all samples. According to the result of XRD, the crystal structure of CoPt is fcc. The angular dependence of magnetization of the nanowires shows that the easy axis of magnetization is along the growth direction of the nanowires.
Keywords:  nanowires      magnetic anisotropy      magnetic properties  
Received:  16 October 2014      Revised:  17 December 2014      Accepted manuscript online: 
PACS:  62.23.Hj (Nanowires)  
  75.75.-c (Magnetic properties of nanostructures)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Corresponding Authors:  Satoshi Kitai     E-mail:  kita.s.aa@m.titech.ac.jp
About author:  62.23.Hj; 75.75.-c; 81.16.-c

Cite this article: 

Satoshi Kitai (锻代聪), Zhang Zheng-Jun (张政军), Shi Ji (史蹟), Yoshio Nakamura (中村吉男) Characterization of CoPt nanowire fabricated by glancing angle deposition 2015 Chin. Phys. B 24 056201

[1] Lin C J and Gorman G L 1992 Appl. Phys. Lett. 61 1600
[2] Wu B, Heidelberg A and Boland J J 2005 Nat. Mater. 4 525
[3] Tabib-Azar M, Nassirou M, Wang R, Sharma S, Kamins T I, Islam M S and Williams R S 2005 Appl. Phys. Lett. 87 113102
[4] Kim J Y, Jeong H and Jang D J 2011 J. Nanoparticle Res. 13 6699
[5] Zeng H, Zheng M, Skomski R, Sellmyer D J, Liu Y, Menon L and Bandyopadhyay S 2000 J. Appl. Phys. 87 4718
[6] Zhang X Y, Wen G H, Chan Y F, Zheng R K, Zhang X X and Wang N 2003 Appl. Phys. Lett. 83 3341
[7] Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S and Sellmyer D 2002 Phys. Rev. B 65 134426
[8] Castaldi L, Giannakopoulos K, Travlos A, Niarchos D, Boukari S and Beaurepaire E 2005 J. Magn. Magn. Mater. 290 544
[9] Fert A and Piraux L 1999 J. Magn. Magn. Mater. 200 338
[10] Visokay M R and Sinclair R 1995 Appl. Phys. Lett. 66 1692
[11] Yasui N, Imada A and Den T 2003 Appl. Phys. Lett. 83 3347
[12] Huang Y H, Okumura H, Hadjipanayis G C and Weller D 2002 J. Appl. Phys. 91 6869
[13] Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M and Han X F 2008 J. Magn. Magn. Mater. 320 1803
[14] Li W, Peng Y, Jones G A, Shen T H and Hill G 2005 J. Appl. Phys. 97 034308
[15] Mallet J, Yu-Zhang K, Chien C L, Eagleton T S and Searson P C 2004 Appl. Phys. Lett. 84 3900
[16] Liu L F, Xie S S and Zhou W Y 2009 J. Phys. D: Appl. Phys. 42 205002
[17] Gapin A I, Ye X R, Aubuchon J F, Chen L H, Tang Y J and Jin S 2006 J. Appl. Phys. 99 08G902
[18] Choi J R, Oh S J, Ju H and Cheon J 2005 Nano Lett. 5 2179
[19] Wang Y W, Zhang L D, Meng G W, Peng X S, Jin Y X and Zhang J 2002 J. Phys. Chem. B 106 2502
[20] Sorop T G, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn R B, Gösele U and de Jongh L J 2004 J. Magn. Magn. Mater. 272 1656
[21] Liu H R, Lu Q F, Han X F, Liu X G, Xu B S and Jia H S 2012 Appl. Surf. Sci. 258 7401
[22] Xu X H, Wang F, Liu J J, Park K C and Fujishige M 2011 Sol. Energy Mater. Sol. Cells 95 791
[23] Navas D, Pirota K R, Mendoza Zelis P, Velazquez D, Ross C A and Vazquez M 2008 J. Appl. Phys. 103 07D523
[24] Khurshid H, Huang Y H, Bonder M J and Hadjipanayis G C 2009 J. Magn. Magn. Mater. 321 277
[25] Fodor P S, Tsoi G M and Wenger L E 2002 J. Appl. Phys. 91 8186
[26] Robbie K 1998 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 16 1115
[27] Su S, Lin L, Li Z, Feng J and Zhang Z 2013 Nanoscale Res. Lett. 8 405
[28] Li L, Zhai T, Zeng H, Fang X, Bando Y and Golberg D 2011 J. Mater. Chem. 21 40
[29] Liu Y, Yang Y, Zhang Y, Wang Y, Zhang X and Jiang Y 2013 Mater. Res. Bull. 48 721
[30] Kesapragada S V and Gall D 2006 Thin Solid Films 494 234
[31] Martín-Palma R J, Manso-Silván M, Lakhtakia A and Pantano C G 2009 Mater. Lett. 63 197
[32] Zhou C M and Gall D 2007 Appl. Phys. Lett. 90 093103
[33] Tripp R A, Dluhy R A and Zhao Y 2008 Nano Today 3 31
[34] Sun A C, Yuan F T, Hsu J H and Lee H Y 2009 Scr. Mater. 61 713
[35] Igasaki Y and Fujiwara T 1996 J. Cryst. Growth 158 268
[36] Alouach H, Fujiwara H and Mankey G J 2005 J. Vac. Sci. Technol. A 23 1046
[37] Ristau R A, Barmak K, Lewis L H, Coffey K R and Howard J K 1999 J. Appl. Phys. 86 4527
[38] Ciureanu M, Beron F, Clime L, Ciureanu P, Yelon A, Ovari T A, Cochrane R W, Normandin F and Veres T 2005 Electrochim. Acta 50 4487
[39] Paulus P M, Luis F, Kro M, Schmid G and Jongh L J De 2001 J. Magn. Magn. Mater. 224 180
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[12] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[13] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[14] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[15] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
No Suggested Reading articles found!