Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107101    DOI: 10.1088/1674-1056/ac0a62
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of thickness on current-induced magnetization switching in L10-FePt single layer

Shi-Qi Zheng(郑诗琪)1, Kang-Kang Meng(孟康康)1,†, Zhen-Guo Fu(付振国)2, Ji-Kun Chen(陈吉堃)1, Jun Miao(苗君)1, Xiao-Guang Xu(徐晓光)1, and Yong Jiang(姜勇)1,‡
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100083, China
Abstract  The thickness dependent spin-orbit torque (SOT) in an L10-FePt single layer is investigated in this work. As the thickness increases from 8 nm to 16 nm, the magnetization switching ratio in the L10-FePt film with higher chemical ordering becomes smaller. It is noted that compared with 3-nm-thick L10-FePt film, 8-nm-thick L10-FePt film can switch much magnetization with the increase of chemical ordering. When the FePt film is thick enough, the SOT in FePt is closely related to the L10-ordered structure, which indicates a bulk nature. Therefore, the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films, while the structural gradient may play an important role for thicker films. However, both of the two mechanisms cannot fully explain the process of magnetization switching and the spin current generation. Although many factors influence SOT, here in this work we emphasize only the bulk nature of strong SOC in L10-FePt through density functional theory calculations, which should generate large spin current due to spin Hall effect.
Keywords:  spin-orbit coupling      magnetic anisotropy      spin transport effects  
Received:  06 March 2021      Revised:  07 June 2021      Accepted manuscript online:  11 June 2021
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.76.+j (Spin transport effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2005801), the National Natural Science Foundation of China (Grant Nos. 51971027, 51731003, 51971023, 51927802, and 51971024), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-19-001A3).
Corresponding Authors:  Kang-Kang Meng, Yong Jiang     E-mail:  kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn

Cite this article: 

Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇) Influence of thickness on current-induced magnetization switching in L10-FePt single layer 2021 Chin. Phys. B 30 107101

[1] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[2] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[3] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[4] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[5] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2016 Phys. Rev. B 94 214413
[6] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[7] Cai K, Zhu Z, Lee J M, Mishra R, Ren L, Pollard S D, He P, Liang G, Teo K L and Yang H 2020 Nat. Electron. 3 37
[8] Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razaci S A, He Q L, Liu Y, Yang P, Kim S K, Zheng C, Liu Y, Pan L, Lake R K, Han X, Tserkovnyak Y, Shi J and Wang K L 2018 Nat. Commun. 9 3612
[9] Nishimura T, Kim D Y, Kim D H, Nam Y S, Park Y K, Kim N H, Shiota Y, You C Y, Min B C, Choe S B and Ono T 2021 Phys. Rev. B 103 104409
[10] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[11] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[12] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[13] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[14] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[15] Rodmacq B, Manchon A, Ducruet C, Auffret S and Dieny B 2009 Phys. Rev. B 79 024423
[16] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[17] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[18] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[19] Grimaldi E, Krizakova V, Sala G, Yasin F, Couet S, Kar G S, Garello K and Gambardella P 2020 Nat. Nanotechnol. 15 111
[20] Zhu L, Zhu L, Shi S, Ralph D C and Buhrman R A 2020 Adv. Electron. Mater. 6 1901131
[21] Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater. 11 1028
[22] Luo Z, Hrabec A, Dao T P, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature 579 214
[23] Ou Y, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 93 220405
[24] Pesin D A and MacDonald A H 2012 Phys. Rev. B 86 014416
[25] Chi Z, Lau Y C, Xu X, Ohkubo T, Hono K and Hayashi M 2020 Sci. Adv. 6 2324
[26] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
[27] Fan X, Celik H, Wu J, Ni C, Lee K J, Lorenz V O and Xiao J Q 2014 Nat. Commun. 5 3042
[28] Chernyshov A, Overby M, Liu X, Furdyna J K, LyandaGeller Y and Rokhinson L P 2009 Nat. Phys. 5 656
[29] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2018 Sci. Adv. 4 eaat9989
[30] Trichy G R, Chakraborti D, Narayan J and Prater J T 2008 Appl. Phys. Lett. 92 102504
[31] Tsai W C, Liao S C, Huang K F, Wang D S and Lai C H 2013 Appl. Phys. Lett. 103 252405
[32] Xu S J, Shi Z and Zhou S M 2018 Phys. Rev. B 98 024413
[33] Zheng S Q, Meng K K, Liu Q B, Chen J K, Miao J, Xu X G and Jiang Y 2020 Appl. Phys. Lett. 117 242403
[34] Tang M, Shen K, Xu S J, Yang H L, Hu S, Lü W M, Li C J, Li M S, Yuan Z, Pennycook S J, Xia K, Manchon A, Zhou S M and Qiu X P 2020 Adv. Mater. 32 2002607
[35] Christodoulides J A, Farber P, Daniil M, Okumura H, Hadjipanayis G C, Skumryev V, Simopoulos A and Weller D 2001 IEEE Trans. Magn. 37 1292
[36] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[37] Lee H R, Lee K, Cho J, Choi Y H, You C Y, Jung M H, Bonell F, Shiota Y, Miwa S and Suzuki Y 2014 Sci. Rep. 4 6548
[38] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2017 Appl. Phys. Lett. 110 142401
[39] Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol. 10 333
[40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[1] Thickness-dependent magnetic properties in Pt/[Co/Ni]n} multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军), Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[2] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[3] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[4] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!