Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106807    DOI: 10.1088/1674-1056/abee6f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Band engineering of honeycomb monolayer CuSe via atomic modification

Lei Gao(高蕾)1,2, Yan-Fang Zhang(张艳芳)2, Jia-Tao Sun(孙家涛)2,3, and Shixuan Du(杜世萱)2,†
1 Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China;
2 Institute of Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Two-dimensional monolayer copper selenide (CuSe) has been epitaxially grown and predicted to host the Dirac nodal line fermion (DNLF). However, the metallic state of monolayer CuSe inhibits the potential application of nanoelectronic devices in which a band gap is needed to realize on/off properties. Here, we engineer the band structure of monolayer CuSe which is an analogue of a p-doped system via external atomic modification in an effort to realize the semiconducting state. We find that the H and Li modified monolayer CuSe shifts the energy band and opens an energy gap around the Fermi level. Interestingly, both the atomic and electronic structures of monolayer CuHSe and CuLiSe are very different. The H atoms bind on top of Se atoms of monolayer CuSe with Se-H polar covalent bonds, annihilating the DNLF band of monolayer CuSe dominated by Se orbitals. In contrast, Li atoms prefer to adsorb at the hexagonal center of CuSe, preserving the DNLF band of monolayer CuSe dominated by Se orbitals, but opening band gaps due to a slight buckling of the CuSe layer. The realization of metal-to-semiconductor transition from monolayer CuSe to CuXSe (X=H, Li) as revealed by first-principles calculations makes it possible to use CuSe in future electronic devices.
Keywords:  first-principles calculations      monolayer CuSe      band engineering  
Received:  13 January 2021      Revised:  01 March 2021      Accepted manuscript online:  15 March 2021
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  81.05.Hd (Other semiconductors)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Key Research & Development Projects of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61888102), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Shixuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱) Band engineering of honeycomb monolayer CuSe via atomic modification 2021 Chin. Phys. B 30 106807

[1] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[3] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[4] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[5] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[6] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[7] Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717
[8] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[9] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P and Hone J 2015 Nat. Nanotech. 10 534
[10] Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Jr., Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650
[11] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944
[12] Lu J Q, Wu J, Duan W, Liu F, Zhu B F and Gu B L 2003 Phys. Rev. Lett. 90 156601
[13] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[14] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489
[15] Nakanishi T and Ando T 2015 Phys. Rev. B 91 155420
[16] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[17] Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602
[18] Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610
[19] Jayasekera T, Kong B D, Kim K W and Buongiorno Nardelli M 2010 Phys. Rev. Lett. 104 146801
[20] Kolobov A V, Fons P, Saito Y, Tominaga J, Hyot B and André B 2017 Phys. Rev. Mater. 1 024003
[21] Song W and Yang L 2017 Phys. Rev. B 96 235441
[22] He Y, Yang Y, Zhang Z, Gong Y, Zhou W, Hu Z, Ye G, Zhang X, Bianco E, Lei S, Jin Z, Zou X, Yang Y, Zhang Y, Xie E, Lou J, Yakobson B, Vajtai R, Li B and Ajayan P 2016 Nano Lett. 16 3314
[23] Shen T, Penumatcha A V and Appenzeller J 2016 ACS Nano 10 4712
[24] Lebégue S, Klintenberg M, Eriksson O and Katsnelson M I 2009 Phys. Rev. B 79 245117
[25] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[26] Yang J H, Song S, Du S, Gao H J and Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[29] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[31] Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206
[32] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[33] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[34] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[35] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105
[36] Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J B, Du S X and Gao H J 2020 Chin. Phys. Lett. 37 068103
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
No Suggested Reading articles found!