Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107102    DOI: 10.1088/1674-1056/ac0692
RAPID COMMUNICATION Prev   Next  

Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations

Qianpeng Wang(王乾鹏)1, Daye Zheng(郑大也)1, Lixin He(何力新)1,†, and Xinguo Ren(任新国)2,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The diffusion property of the intercalated species in the graphite materials is at the heart of the rate performance of graphite-based metal-ion secondary battery. Here we study the diffusion process of a AlCl4 molecule within graphite – a key component of a recently reported aluminum ion battery with excellent performance – via molecular dynamics (MD) simulations. Both ab-initio MD (AIMD) and semiempirical tight-binding MD simulations show that the diffusion process of the intercalated AlCl4 molecule becomes rather inhomogeneous, when the simulation time exceeds approximately 100 picoseconds. Specifically, during its migration in between graphene layers, the intercalated AlCl4 molecule may become stagnant occasionally, and then recovers its normal (fast) diffusion behavior after halting for a while. When this phenomenon occurs, the linear relationship of the mean squared displacement (MSD) versus the duration time is not fulfilled. We interpret this peculiar behavior as a manifestation of inadequate sampling of rare event (the stagnation of the molecule), which does not yet appear in short-time MD simulations. We further check the influence of strains present in graphite intercalated compounds (GIC) on the diffusion properties of AlCl4, and find that their presence in general slows down the diffusion of the intercalated molecule, and is detrimental to the rate performance of the GIC-based battery.
Keywords:  diffusion      molecular dynamics calculations      graphite      electrodes  
Received:  24 April 2021      Revised:  27 May 2021      Accepted manuscript online:  29 May 2021
PACS:  82.56.Lz (Diffusion)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  81.05.uf (Graphite)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0201202) and the National Natural Science Foundation of China (Grant Nos. 11874335 and 11774327).
Corresponding Authors:  Lixin He, Xinguo Ren     E-mail:  helx@ustc.edu.cn;renxg@iphy.ac.cn

Cite this article: 

Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国) Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations 2021 Chin. Phys. B 30 107102

[1] Goodenough J B and Kim Y 2009 Chemistry of Materials 22 587
[2] Jayaprakash N, Das S K and Archer L A 2011 Chem. Commun. 47 12610
[3] Rani J V, Kanakaiah V, Dadmal T, Rao M S and Bhavanarushi S 2013 J. Electrochem. Soc. 160 A1781
[4] Hudak N S 2014 J. Phys. Chem. C 118 5203
[5] Elia G A, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Peters W, Drillet J F, Passerini S and Hahn R 2016 Adv. Mater. 28 7564
[6] Lin M C, Gong M, Lu B A, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J and Dai H J 2015 Nature 520 324
[7] Wang D Y, Wei C Y, Lin M C, Pan C J, Chou H L, Chen H A, Gong M, Wu Y P, Yuan C Z, Angell M, Hsieh Y J H, Chen Y H, Wen C Y, Chen C W, Hwang B J, Chen C C and Dai H J 2017 Nat. Commun. 8 14283
[8] Wu M S, Xu B, Chen L Q and Ouyang C Y 2016 Electrochimica Acta 195 158
[9] Jung S C, Kang Y J, Yoo D J, Choi J W and Han Y K 2016 J. Phys. Chem. C 120 13384
[10] Gao Y, Zhu C, Chen Z and Lu G 2017 J. Phys. Chem. C 121 7131
[11] Agiorgousis M L, Sun Y Y and Zhang S B 2017 ACS Energy Letters 2 689
[12] Bhauriyal P, Mahata A and Pathak B 2017 Phys. Chem. Chem. Phys. 19 7980
[13] Wang Q P, Zheng D Y, He L X and Ren X G 2019 Phys. Rev. Applied 12 044060
[14] Novko D, Zhang Q and Kaghazchi P 2019 Phys. Rev. Applied 12 024016
[15] Li J, Liu Q, Flores R A, Lemmon J and Bligaard T 2020 Phys. Chem. Chem. Phys. 22 5969
[16] Zamri F A and Bakar M H A 2020 Materials Today Communications 25 101641
[17] Geng K H, Cao H N and Lin M C 2020 First principle study on atomic scale structures of cathode in aluminium-ion battery using various van der waals corrections, E3S Web of Conferences vol. 213 (EDP Sciences)
[18] Xu J H, Jadhav A L, Turney D E and Messinger R J 2020 Journal of Materials Chemistry A 8 16006
[19] Chambers A, Park C, Baker R T K and Rodriguez N M 1998 J. Phys. Chem. B 102 4253
[20] Zhang X R, Sukpirom N and Lerner M M 1999 Materials Research Bulletin 34 363
[21] Read J A 2015 J. Phys. Chem. C 119 8438
[22] Miyoshi S, Akbay T, Kurihara T, Fukuda T, Staykov A T, Ida S and Ishihara T 2016 J. Phys. Chem. C 120 22887
[23] Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer H W, Nowak S, Winter M and Placke T 2014 Energy Environ. Sci. 7 3412
[24] Xu J T, Dou Y H, Wei Z X, Ma J M, Deng Y H, Li Y T, Liu H K and Dou S X 2017 Advanced Science 4 1700146
[25] Kravchyk K V and Kovalenko M V 2019 Advanced Energy Materials 9 1901749
[26] Wu Y P, Gong M, Lin M C, et al. 2016 Adv. Mater. 28 9218
[27] Yang G Y, Chen L, Jiang P, Guo Z Y, Wang W and Liu Z P 2016 RSC Advances 6 47655
[28] Wang S T, Kravchyk K V, Krumeich F and Kovalenko M V 2017 ACS Applied Materials & Interfaces 9 28478
[29] Mckerracher R, Holland A, Cruden A and Wills R 2019 Carbon 144 333
[30] Chen M H, Guo G C and He L X 2010 J. Phys.: Condens. Matter 22 445501
[31] Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C and He L X 2016 Comput. Mater. Sci. 112 503
[32] The ABACUS software webpage: http://abacus.ustc.edu.cn
[33] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[34] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425
[35] Lin P Z, Ren X G and He L X 2021 Phys. Rev. B 103 235131
[36] Grimme S 2006 Journal of Computational Chemistry 27 1787
[37] Nosé S 1984 J. Phys. Chem. 81 511
[38] Hoover W G 1985 Phys. Rev. A 31 1695
[39] Mehrer H 2007 Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes vol. 155 (Springer Science & Business Media)
[40] Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S and Grimme S 2021 Wiley Interdisciplinary Reviews: Computational Molecular Science 11 e1493
[41] Pracht P, Caldeweyher E, Ehlert S and Grimme S 2019 chemrxiv: 8326202.v1
[42] He X F, Zhu Y Z, Epstein A and Mo Y F 2018 Npj Computational Materials 4 1
[43] Jónsson H, Mills G, and Jacobsen K 1998 Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne B J, Ciccotti G and Coker D F (World Scientific)
[44] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[45] Smidstrup S, Pedersen A, Stokbro K and Jónsson H 2014 J. Chem. Phys. 140 214106
[46] Larsen A H, Mortensen J J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[11] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[12] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[13] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[14] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[15] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
No Suggested Reading articles found!