CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of thickness on current-induced magnetization switching in L10-FePt single layer |
Shi-Qi Zheng(郑诗琪)1, Kang-Kang Meng(孟康康)1,†, Zhen-Guo Fu(付振国)2, Ji-Kun Chen(陈吉堃)1, Jun Miao(苗君)1, Xiao-Guang Xu(徐晓光)1, and Yong Jiang(姜勇)1,‡ |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100083, China |
|
|
Abstract The thickness dependent spin-orbit torque (SOT) in an L10-FePt single layer is investigated in this work. As the thickness increases from 8 nm to 16 nm, the magnetization switching ratio in the L10-FePt film with higher chemical ordering becomes smaller. It is noted that compared with 3-nm-thick L10-FePt film, 8-nm-thick L10-FePt film can switch much magnetization with the increase of chemical ordering. When the FePt film is thick enough, the SOT in FePt is closely related to the L10-ordered structure, which indicates a bulk nature. Therefore, the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films, while the structural gradient may play an important role for thicker films. However, both of the two mechanisms cannot fully explain the process of magnetization switching and the spin current generation. Although many factors influence SOT, here in this work we emphasize only the bulk nature of strong SOC in L10-FePt through density functional theory calculations, which should generate large spin current due to spin Hall effect.
|
Received: 06 March 2021
Revised: 07 June 2021
Accepted manuscript online: 11 June 2021
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
75.76.+j
|
(Spin transport effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2005801), the National Natural Science Foundation of China (Grant Nos. 51971027, 51731003, 51971023, 51927802, and 51971024), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-19-001A3). |
Corresponding Authors:
Kang-Kang Meng, Yong Jiang
E-mail: kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn
|
Cite this article:
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇) Influence of thickness on current-induced magnetization switching in L10-FePt single layer 2021 Chin. Phys. B 30 107101
|
[1] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [2] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [3] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [4] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [5] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2016 Phys. Rev. B 94 214413 [6] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [7] Cai K, Zhu Z, Lee J M, Mishra R, Ren L, Pollard S D, He P, Liang G, Teo K L and Yang H 2020 Nat. Electron. 3 37 [8] Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razaci S A, He Q L, Liu Y, Yang P, Kim S K, Zheng C, Liu Y, Pan L, Lake R K, Han X, Tserkovnyak Y, Shi J and Wang K L 2018 Nat. Commun. 9 3612 [9] Nishimura T, Kim D Y, Kim D H, Nam Y S, Park Y K, Kim N H, Shiota Y, You C Y, Min B C, Choe S B and Ono T 2021 Phys. Rev. B 103 104409 [10] Hirsch J E 1999 Phys. Rev. Lett. 83 1834 [11] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348 [12] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603 [13] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [14] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230 [15] Rodmacq B, Manchon A, Ducruet C, Auffret S and Dieny B 2009 Phys. Rev. B 79 024423 [16] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871 [17] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [18] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [19] Grimaldi E, Krizakova V, Sala G, Yasin F, Couet S, Kar G S, Garello K and Gambardella P 2020 Nat. Nanotechnol. 15 111 [20] Zhu L, Zhu L, Shi S, Ralph D C and Buhrman R A 2020 Adv. Electron. Mater. 6 1901131 [21] Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater. 11 1028 [22] Luo Z, Hrabec A, Dao T P, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature 579 214 [23] Ou Y, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 93 220405 [24] Pesin D A and MacDonald A H 2012 Phys. Rev. B 86 014416 [25] Chi Z, Lau Y C, Xu X, Ohkubo T, Hono K and Hayashi M 2020 Sci. Adv. 6 2324 [26] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799 [27] Fan X, Celik H, Wu J, Ni C, Lee K J, Lorenz V O and Xiao J Q 2014 Nat. Commun. 5 3042 [28] Chernyshov A, Overby M, Liu X, Furdyna J K, LyandaGeller Y and Rokhinson L P 2009 Nat. Phys. 5 656 [29] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2018 Sci. Adv. 4 eaat9989 [30] Trichy G R, Chakraborti D, Narayan J and Prater J T 2008 Appl. Phys. Lett. 92 102504 [31] Tsai W C, Liao S C, Huang K F, Wang D S and Lai C H 2013 Appl. Phys. Lett. 103 252405 [32] Xu S J, Shi Z and Zhou S M 2018 Phys. Rev. B 98 024413 [33] Zheng S Q, Meng K K, Liu Q B, Chen J K, Miao J, Xu X G and Jiang Y 2020 Appl. Phys. Lett. 117 242403 [34] Tang M, Shen K, Xu S J, Yang H L, Hu S, Lü W M, Li C J, Li M S, Yuan Z, Pennycook S J, Xia K, Manchon A, Zhou S M and Qiu X P 2020 Adv. Mater. 32 2002607 [35] Christodoulides J A, Farber P, Daniil M, Okumura H, Hadjipanayis G C, Skumryev V, Simopoulos A and Weller D 2001 IEEE Trans. Magn. 37 1292 [36] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425 [37] Lee H R, Lee K, Cho J, Choi Y H, You C Y, Jung M H, Bonell F, Shiota Y, Miwa S and Suzuki Y 2014 Sci. Rep. 4 6548 [38] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2017 Appl. Phys. Lett. 110 142401 [39] Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol. 10 333 [40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 [44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|