Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪)1, Kang-Kang Meng(孟康康)1,†, Zhen-Guo Fu(付振国)2, Ji-Kun Chen(陈吉堃)1, Jun Miao(苗君)1, Xiao-Guang Xu(徐晓光)1, and Yong Jiang(姜勇)1,‡
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100083, China
Abstract The thickness dependent spin-orbit torque (SOT) in an L10-FePt single layer is investigated in this work. As the thickness increases from 8 nm to 16 nm, the magnetization switching ratio in the L10-FePt film with higher chemical ordering becomes smaller. It is noted that compared with 3-nm-thick L10-FePt film, 8-nm-thick L10-FePt film can switch much magnetization with the increase of chemical ordering. When the FePt film is thick enough, the SOT in FePt is closely related to the L10-ordered structure, which indicates a bulk nature. Therefore, the disordering plays an important role in the magnetization switching only for the ultra-thin FePt films, while the structural gradient may play an important role for thicker films. However, both of the two mechanisms cannot fully explain the process of magnetization switching and the spin current generation. Although many factors influence SOT, here in this work we emphasize only the bulk nature of strong SOC in L10-FePt through density functional theory calculations, which should generate large spin current due to spin Hall effect.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2005801), the National Natural Science Foundation of China (Grant Nos. 51971027, 51731003, 51971023, 51927802, and 51971024), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-19-001A3).
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇) Influence of thickness on current-induced magnetization switching in L10-FePt single layer 2021 Chin. Phys. B 30 107101
[1] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys.91 035004 [2] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature476 189 [3] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett.109 096602 [4] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science336 555 [5] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2016 Phys. Rev. B94 214413 [6] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater.15 535 [7] Cai K, Zhu Z, Lee J M, Mishra R, Ren L, Pollard S D, He P, Liang G, Teo K L and Yang H 2020 Nat. Electron.3 37 [8] Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razaci S A, He Q L, Liu Y, Yang P, Kim S K, Zheng C, Liu Y, Pan L, Lake R K, Han X, Tserkovnyak Y, Shi J and Wang K L 2018 Nat. Commun.9 3612 [9] Nishimura T, Kim D Y, Kim D H, Nam Y S, Park Y K, Kim N H, Shiota Y, You C Y, Min B C, Choe S B and Ono T 2021 Phys. Rev. B103 104409 [10] Hirsch J E 1999 Phys. Rev. Lett.83 1834 [11] Murakami S, Nagaosa N and Zhang S C 2003 Science301 1348 [12] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett.92 126603 [13] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science306 1910 [14] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater.9 230 [15] Rodmacq B, Manchon A, Ducruet C, Auffret S and Dieny B 2009 Phys. Rev. B79 024423 [16] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater.14 871 [17] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature476 189 [18] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science336 555 [19] Grimaldi E, Krizakova V, Sala G, Yasin F, Couet S, Kar G S, Garello K and Gambardella P 2020 Nat. Nanotechnol.15 111 [20] Zhu L, Zhu L, Shi S, Ralph D C and Buhrman R A 2020 Adv. Electron. Mater.6 1901131 [21] Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater.11 1028 [22] Luo Z, Hrabec A, Dao T P, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature579 214 [23] Ou Y, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B93 220405 [24] Pesin D A and MacDonald A H 2012 Phys. Rev. B86 014416 [25] Chi Z, Lau Y C, Xu X, Ohkubo T, Hono K and Hayashi M 2020 Sci. Adv.6 2324 [26] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun.4 1799 [27] Fan X, Celik H, Wu J, Ni C, Lee K J, Lorenz V O and Xiao J Q 2014 Nat. Commun.5 3042 [28] Chernyshov A, Overby M, Liu X, Furdyna J K, LyandaGeller Y and Rokhinson L P 2009 Nat. Phys.5 656 [29] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2018 Sci. Adv.4 eaat9989 [30] Trichy G R, Chakraborti D, Narayan J and Prater J T 2008 Appl. Phys. Lett.92 102504 [31] Tsai W C, Liao S C, Huang K F, Wang D S and Lai C H 2013 Appl. Phys. Lett.103 252405 [32] Xu S J, Shi Z and Zhou S M 2018 Phys. Rev. B98 024413 [33] Zheng S Q, Meng K K, Liu Q B, Chen J K, Miao J, Xu X G and Jiang Y 2020 Appl. Phys. Lett.117 242403 [34] Tang M, Shen K, Xu S J, Yang H L, Hu S, Lü W M, Li C J, Li M S, Yuan Z, Pennycook S J, Xia K, Manchon A, Zhou S M and Qiu X P 2020 Adv. Mater.32 2002607 [35] Christodoulides J A, Farber P, Daniil M, Okumura H, Hadjipanayis G C, Skumryev V, Simopoulos A and Weller D 2001 IEEE Trans. Magn.37 1292 [36] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B89 144425 [37] Lee H R, Lee K, Cho J, Choi Y H, You C Y, Jung M H, Bonell F, Shiota Y, Miwa S and Suzuki Y 2014 Sci. Rep.4 6548 [38] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H and Jiang Y 2017 Appl. Phys. Lett.110 142401 [39] Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol.10 333 [40] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [41] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [43] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett.80 891 [44] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.