Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087303    DOI: 10.1088/1674-1056/ac0131
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector

Hongyu Ma(马宏宇)1,2, Kewei Liu(刘可为)1,2,†, Zhen Cheng(程祯)1, Zhiyao Zheng(郑智遥)1,2, Yinzhe Liu(刘寅哲)1,2, Peixuan Zhang(张培宣)1,2, Xing Chen(陈星)1, Deming Liu(刘德明)1, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2,‡
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences(CAS), Changchun 130033, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.
Keywords:  ZnO      quantum dots      ultraviolet photodetector      oxygen vacancy  
Received:  06 May 2021      Revised:  11 May 2021      Accepted manuscript online:  14 May 2021
PACS:  73.61.Ga (II-VI semiconductors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902, 12074372, 11774341, 11974344, 61975204, and 11804335), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020225), the Open Project of the State Key Laboratory of Luminescence and Applications (Grant Nos. SKLA-2020-02 and SKLA-2020-06).
Corresponding Authors:  Kewei Liu, Dezhen Shen     E-mail:  liukw@ciomp.ac.cn;shendz@ciomp.ac.cn

Cite this article: 

Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振) Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector 2021 Chin. Phys. B 30 087303

[1] Lin H W, Ku S Y, Su H C, Huang C W, Lin Y T, Wong K T and Wu C C 2005 Adv. Mater. 17 2489
[2] Mishra Y K, Modi G, Cretu V, Postica V and Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L and Adelung R 2015 ACS Appl. Mater. Interfaces 7 14303
[3] Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra Y K and Adelung R 2014 Adv. Mater. 26 1541
[4] Zhou H, Fang G J, Liu N and Zhao X Z 2011 Mater. Sci. Eng. B 176 740
[5] Shaikh S K, Inamdar S I, Ganbavle V V and Rajpure K Y 2016 J. Alloys Compd. 664 242
[6] Xuan J Y, Zhao G D, Shi X B, Geng W, Li H Z, Sun M L, Jia F C, Tan S G, Yin G C and Liu B 2021 Chin. Phys. B 30 020701
[7] Yang J L, Liu K W and Shen D Z 2017 Chin. Phys. B 26 047308
[8] Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503
[9] Yu X X, Zheng H M, Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301
[10] Liu K, Sakurai M and Aono M 2010 Sensors 10 8604
[11] Pearton S, Norton D, Ip K, Heo Y and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[12] Look D C 2001 Mater. Sci. Eng. B 80 383
[13] Ohtomo A, Kawasaki M, Sakurai Y, Yoshida Y, Koinuma H, Yu P, Tang Z K, Wong G K L and Segawa Y 1998 Mater. Sci. Eng. B 54 24
[14] Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867
[15] Li L, Gu L, Lou Z, Fan Z and Shen G 2017 ACS Nano 11 4067
[16] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V and Gun'ko Y K 2017 J. Mater. Chem. A 5 13252
[17] Tian W, Lu H and Li L 2015 Nano Res. 8 382
[18] Li X, Li X, Zhu B, Wang J, Lan H and Chen X 2017 RSC Adv. 7 30956
[19] Hoang Tran M, Park T and Hur J 2021 Appl. Surf. Sci. 539 148222
[20] Chen Z, Li X X, Du G, Chen N and Suen A Y M 2011 J. Lumin. 131 2072
[21] Debasis, Bera, Lei, Qian, Subir, Sabui and Swadeshmukul 2008 Opt. Mater. 30 1233
[22] Liu Y, Morishima T, Yatsui T, Kawazoe T and Ohtsu M 2011 Nanotechnology 22 215605
[23] Jin Y Z, Wang J P, Sun B Q, Blakesley J C and Greenham N C 2008 Nano Lett. 8 1649
[24] Yan W, Mechau N, Hahn H and Krupke R 2010 Nanotechnology 21 115501
[25] Mishra S K, Srivastava R K and Prakash S G 2012 J. Mater. Sci.: Mater. Electron. 24 125
[26] Nasiri N, Bo R, Wang F, Fu L and Tricoli A 2015 Adv. Mater. 27 4336
[27] Guo D Y, Shan C X, Qu S N and Shen D Z 2014 Sci. Rep. 4 7469
[28] Liu S, Li M Y, Su D, Yu M, Kan H, Liu H, Wang X and Jiang S 2018 ACS Appl. Mater. Interfaces 10 32516
[29] Abbasi F, Zahedi F and Yousefi M H 2021 Opt. Commun. 482 126565
[30] Liu S, Li M-Y, Zhang J, Su D, Huang Z, Kunwar S and Lee J 2020 Nano-Micro Lett. 12 114
[31] Li M Y, Yu M, Su D, Zhang J, Jiang S, Wu J, Wang Q and Liu S 2019 Small 15 1901606
[32] Xu X, Xu C and Hu J 2014 J. Appl. Phys. 116 103105
[33] Tian W, Zhang C, Zhai T, Li S L, Wang X, Liao M, Tsukagoshi K, Golberg D and Bando Y 2013 Chem. Commun. (Camb) 49 3739
[34] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J and Kim K 2012 Nat. Mater. 11 301
[35] Ahn S E, Ji H J, Kim K, Kim G T, Bae C H, Park S M, Kim Y K and Ha J S 2007 Appl. Phys. Lett. 90 153106
[36] Guo W, Xu S, Wu Z, Wang N, Loy M M and Du S 2013 Small 9 3031
[37] Bera A and Basak D 2009 Appl. Phys. Lett. 94 163119
[38] Li G, Zhang H, Meng L, Sun Z, Chen Z, Huang X and Qin Y 2020 Sci. Bull. 65 1650
[39] An W, Wu X and Zeng X C 2015 J. Phys. Chem. C 112 5747
[40] Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303
[41] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598
[42] Kwoka M, Kulis-Kapuscinska A, Zappa D, Comini E and Szuber J 2020 Nanotechnology 31 465705
[43] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F and Wen L S 2000 Appl. Surf. Sci. 158 134
[44] Choi S, Phillips M R, Aharonovich I, Pornsuwan S, Cowie B C C and Ton-That C 2015 Adv. Opt. Mater. 3 821
[45] Zeng H, Duan G, Li Y, Yang S, Xu X and Cai W 2010 Adv. Funct. Mater. 20 561
[46] Tang X S, Choo E S G, Li L, Ding J and Xue J M 2010 Chem. Mater. 22 3383
[47] Wang Y, Wang P, Zhu Y, Gao J, Gong F, Li Q, Xie R, Wu F, Wang D, Yang J, Fan Z, Wang X and Hu W 2019 Appl. Phys. Lett. 114 011103
[48] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light Sci. Appl. 9 160
[1] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[2] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[3] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[4] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[5] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[6] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[7] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[8] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[9] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[10] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[11] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[12] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[13] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[14] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[15] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[1] ZAFAR AHSAN. SYMMETRIES OF THE ELECTROMAGNETIC FIELDS IN GENERAL RELATIVITY[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(5): 337 -343 .
[2] Guo Wei-Bin, Wang Neng-Chao, Shi Bao-Chang, Guo Zhao-Li. Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder[J]. Chin. Phys., 2003, 12(1): 67 -74 .
[3] Liu Wei-Dong, K. F. Ren, S. Meunier-Guttin-Cluzel, G. Gouesbet. Global vector-field reconstruction of nonlinear dynamical systems from a time series with SVD method and validation with Lyapunov exponents[J]. Chin. Phys., 2003, 12(12): 1366 -1373 .
[4] Shi Bing-Ren. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current[J]. Chin. Phys., 2003, 12(6): 626 -631 .
[5] Cai Jian-Le, Luo Shao-Kai, Jia Li-Qun. A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems[J]. Chin. Phys., 2003, 12(8): 841 -845 .
[6] Feng Guo-Lin, Dong Wen-Jie, Jia Xiao-Jing. Application of retrospective time integration scheme to the prediction of torrential rain[J]. Chin. Phys., 2004, 13(3): 413 -422 .
[7] Tao Yong-Mei, Jiang Qing. Study of BaxSr1-xTiO3 thin films using transverse-field Ising model[J]. Chin. Phys., 2004, 13(7): 1149 -1155 .
[8] Chen Liang, Zhang Geng-Min, Wang Ming-Sheng, Zhang Qi-Feng. Field emission from zinc oxide nanowires[J]. Chin. Phys., 2005, 14(1): 181 -185 .
[9] Wu Bai-Zhi, Xu You-Sheng, Liu Yang, Huang Guo-Xiang. Numerical simulation for separation of multi-phase immiscible fluids in porous media[J]. Chin. Phys., 2005, 14(10): 2046 -2051 .
[10] Wang Jing, Li Yuan-Cheng, Xia Li-Li, Hou Qi-Bao. Lie-form invariance of non-holonomic systems with unilateral constraints[J]. Chin. Phys., 2006, 15(8): 1665 -1668 .