Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087302    DOI: 10.1088/1674-1056/abe3e7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A simple method to synthesize worm-like AlN nanowires and its field emission studies

Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志)
Institute of New Energy Materials and Devices of Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing 100124, China
Abstract  The worm-like AlN nanowires are fabricated by the plasma-enhanced chemical vapor deposition (PECVD) on Si substrates through using Al powder and N2 as precursors, CaF2 as fluxing medium, Au as catalyst, respectively. The as-grown worm-like AlN nanowires each have a polycrystalline and hexagonal wurtzite structure. Their diameters are about 300 nm, and the lengths are over 10 μm. The growth mechanism of worm-like AlN nanowires is discussed. Hydrogen plasma plays a very important role in forming the polycrystalline structure and rough surfaces of worm-like AlN nanowires. The worm-like AlN nanowires exhibit an excellent field-emission (FE) property with a low turn-on field of 4.5 V/μm at a current density of 0.01 mA/cm2 and low threshold field of 9.9 V/μm at 1 mA/cm2. The emission current densities of worm-like AlN nanowires each have a good stability. The enhanced FE properties of worm-like AlN nanowires may be due to their polycrystalline and rough structure with nanosize and high aspect ratio. The excellent FE properties of worm-like AlN nanowires can be explained by a grain boundary conduction mechanism. The results demonstrate that the worm-like AlN nanowires prepared by the proposed simple and the PECVD method possesses the potential applications in photoelectric and field-emission devices.
Keywords:  worm-like aluminum nitride nanowires      growth mechanism      plasma enhanced chemical vapor deposition      field-emission property  
Received:  18 December 2020      Revised:  25 January 2021      Accepted manuscript online:  07 February 2021
PACS:  73.61.Ey (III-V semiconductors)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774017 and 51761135129).
Corresponding Authors:  Ru-Zhi Wang     E-mail:  wrz@bjut.edu.cn

Cite this article: 

Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志) A simple method to synthesize worm-like AlN nanowires and its field emission studies 2021 Chin. Phys. B 30 087302

[1] Zheng W, Huang F, Zheng R and Wu H 2015 Adv. Mater. 27 3921
[2] Liu F, Li L F, Guo T Y, Gan H B, Mo X S, Chen J, Deng S Z and Xu N S 2012 Nanoscale Res. Lett. 7 454
[3] Ali Y A and Teker K 2019 Microelectron. Eng. 211 26
[4] Zhao S, Djavid M and Mi Z 2015 Nano Lett. 15 7006
[5] Laleyan D A, Zhao S, Woo S Y, Tran H N, Le H B, Szkopek T, Guo H, Botton G A and Mi Z 2017 Nano Lett. 17 3738
[6] Mi Z, Zhao S, Woo S Y, Bugnet M, Djavid M, Liu X, Kang J, Kong X, Ji W, Guo H, Liu Z and Botton G A 2016 J. Phys. D: Appl. Phys. 49 364006
[7] Shen L, Lv W, Wang N, Wu L, Qi D, Ma Y and Lei W 2017 CrystEngComm 19 5940
[8] Redkin A N, Yakimov E E, Roshchupkin D V and Korepanov V I 2019 Thin Solid Films 684 15
[9] Pandey A, Kaushik J, Dutta S, Kapoor A K and Kaur D 2018 Thin Solid Films 666 143
[10] Kurtuldu F, G?k?e A and Kurt A O 2018 J. Mater. Sci: Mater. El. 29 20688
[11] Chen F, Ji X and Zhang Q 2015 J. Alloys Compd. 646 879
[12] Wang G, Chen C, Shao Y, Chen F, Zhang L, Wu Y and Hao X 2019 J. Alloys Compd. 794 171
[13] Zheng M, Jia Q, Liu X and Jia G 2019 Ceram. Int. 45 12387
[14] Teker K 2015 Mater. Sci. Technol. 31 1832
[15] Wu H M and Peng Y W 2015 Ceram. Int. 41 4847
[16] Yu L, Lv Y, Zhang X, Zhang Y, Zou R and Zhang F 2011 J. Cryst. Growth 334 57
[17] Cimalla V, Foerster C, Cengher D, Tonisch K and Ambacher O 2006 Phys. Status Solidi B 243 1476
[18] Byeun Y K, Telle R, Jung S H, Choi S C and Hwang H I 2010 Chem. Vapor Depos. 16 72
[19] Zhao S, Connie A T, Dastjerdi M H, Kong X H, Wang Q, Djavid M, Sadaf S, Liu X D, Shih I, Guo H and Mi Z 2015 Sci. Rep. 5 8332
[20] E Y X, Hao Z, Yu J, Wu C, Liu R, Wang L, Xiong B, Wang J, Han Y, Sun C and Luo Y 2015 Nanoscale Res. Lett. 10 383
[21] Aghdaie A, Haratizadeh H, Mousavi S H, Jafari Mohammadi S A and de Oliveira P W 2015 Ceram. Int. 41 2917
[22] Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B and Yan H 2013 CrystEngComm 15 1626
[23] Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H and Wang R Z 2015 Sci. Rep. 5 17692
[24] Ji Y H, Wang R Z, Feng X Y, Zhang Y F and Yan H 2017 J. Phys. Chem. C 121 24804
[25] Feng X Y, Wang R Z, Liang Q, Ji Y H and Yang M Q 2019 Cryst. Growth Des. 19 2687
[26] Liang Q, Wang R Z, Yang M Q, Wang C H and Liu J W 2020 Acta Phys. Sin. 69 087801 (in Chinese)
[27] Davydov V Y, Kitaev Y E, Goncharuk I N and Smirnov A N 1998 Phys. Rev. B 58 12899
[28] Liang Q, Wang R Z, Yang M Q, Ding Y and Wang C H 2020 Thin Solid Films 710 138266
[29] Lei M, Yang H, Guo Y F, Song B, Li P G and Tang W H 2007 Mater. Sci. Eng. B 143 85
[30] Wu Q, Zhang F, Wang X Z, Liu C and Hu Z 2007 J. Phys. Chem. C 111 12639
[31] Xu C K, Xue L, Yin C R and Wang G H 2003 Phys. Status Solidi A 198 329
[32] Yu L, Hu Z, Ma Y, Huo K, Chen Y, Sang H, Lin W and Lu Y 2007 Diam. Relat. Mater. 16 1636
[33] Zhang F, Wu Q, Wang X B, Liu N, Yang J, Hu Y M, Yu Le S, Wang X Z, Hu Z and Zhu J M 2009 J. Phys. Chem. C 113 4053
[34] Yeh Y H, Chen K M, Wu Y H, Hsu Y C, Yu T Y and Lee W I 2011 J. Cryst. Growth 333 16
[35] Sprenger J K, Cavanagh A S, Sun H, Wahl K J, Roshko A and George S M 2016 Chem. Mater. 28 5282
[36] Yeh Y H, Chen K M, Wu Y H, Hsu Y C and Lee W I 2011 J. Cryst. Growth 314 9
[37] Liu F, Su Z J, Mo F Y, Li L, Chen Z S, Liu Q R, Chen J, Deng S Z and Xu N S 2011 Nanoscale 3 610
[38] Tang Y, Cong H, Chen Z and Cheng H 2005 Appl. Phys. Lett. 86 233104
[39] Obraztsov A N, Volkov A P and Pavlovski I Y 1998 J. Exp. Theor. Phys. Lett. 68 59
[40] Dinh D V, Kang S M, Yang J H, Kim S W and Yoon D H 2009 J. Cryst. Growth 311 495
[41] Zhao W, Wang R Z, Song Z W, Wang H, Yan H and Chu P K 2013 J. Phys. Chem. C 117 1518
[1] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[2] Growth mechanism and modification of electronic and magnetic properties of silicene
Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军). Chin. Phys. B, 2015, 24(8): 087303.
[3] The influence of ablation products on the ablation resistance of C/C-SiC composites and the growth mechanism of SiO2 nanowires
Li Xian-Hui (李县辉), Yan Qing-Zhi (燕青芝), Mi Ying-Ying (米应映), Han Yong-Jun (韩永军), Wen Xin (温馨), Ge Chang-Chun (葛昌纯). Chin. Phys. B, 2015, 24(2): 026103.
[4] Controllable synthesis, characterization, and growth mechanism of hollow ZnxCd1-xS spheres generated by a one-step thermal evaporation method
Yang Zai-Xing (杨再兴), Zhong Wei (钟伟), Au Chak-Tong (區澤棠), Du You-Wei (都有为). Chin. Phys. B, 2013, 22(10): 108101.
[5] ZnO microbowls grown on ITO glass substrate through thermal evaporation
Zhang Zheng-Lin (张正林), Zheng Gang (郑刚), Qu Feng-Yu (曲凤玉), Wu Xiang (武祥). Chin. Phys. B, 2012, 21(9): 098104.
[6] Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 ℃
Guo Yan-Qing(郭艳青), Huang Rui(黄锐), Song Jie(宋捷), Wang Xiang(王祥), Song Chao(宋超), and Zhang Yi-Xiong(张奕雄) . Chin. Phys. B, 2012, 21(6): 066106.
[7] Spontaneous formation of single crystal ZnO nanohelices
Wu Xiang(武祥), Cai Wei(蔡伟), and Qu Feng-Yu(曲凤玉). Chin. Phys. B, 2009, 18(4): 1669-1673.
[8] Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Tian Xiao-Qing(田晓庆), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2008, 17(1): 286-289.
[9] ON THE STUDY OF SILICON NANO-WIRES SELF-ASSEMBLED AS PARTICLES
Zhang Ze (张泽), S.T.Lee (李述汤). Chin. Phys. B, 2001, 10(13): 111-116.
No Suggested Reading articles found!