Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106101    DOI: 10.1088/1674-1056/ac80b0
RAPID COMMUNICATION Prev   Next  

Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier

Yinzhe Liu(刘寅哲)1,2, Kewei Liu(刘可为)1,2,†, Jialin Yang(杨佳霖)1,2, Zhen Cheng(程祯)1,2, Dongyang Han(韩冬阳)1,2, Qiu Ai(艾秋)1,2, Xing Chen(陈星)1,2, Yongxue Zhu(朱勇学)1,2, Binghui Li(李炳辉)1,2, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2,‡
1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  One-dimensional (1D) micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors. However, in the axial direction of micro/nanowires, the carriers can transport freely driven by an external electric field, which usually produces large dark current and low detectivity. Here, an UV photodetector built from three cross-intersecting ZnO microwires with double homo-interfaces is demonstrated by the chemical vapor deposition and physical transfer techniques. Compared with the reference device without interface, the dark current of this ZnO double-interface photodetector is significantly reduced by nearly 5 orders of magnitude, while the responsivity decreases slightly, thereby greatly improving the normalized photocurrent-to-dark current ratio. In addition, ZnO double-interface photodetector exhibits a much faster response speed (~ 0.65 s) than the no-interface device (~ 95 s). The improved performance is attributed to the potential barriers at the microwire—microwire homo-interfaces, which can regulate the carrier transport. Our findings in this work provide a promising approach for the design and development of high-performance photodetectors.
Keywords:  ZnO microwire      interface      potential barrier      dark current      photocurrent-to-dark current ratio  
Received:  12 June 2022      Revised:  11 July 2022      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.72.uj (III-V and II-VI semiconductors)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  62.23.Hj (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902,12074372, 11774341, 11974344, 61975204, and 11804335), the National Ten Thousand Talent Program for Young Topnotch Talents, the Key Research and Development Program of Changchun City (Grant No. 21ZY05), the 100 Talents Program of the Chinese Academy of Sciences, Youth Innovation Promotion Association, CAS (Grant No. 2020225), Jilin Province Science Fund (Grant No. 20210101145JC), and XuGuang Talents Plan of CIOMP.
Corresponding Authors:  Kewei Liu, Dezhen Shen     E-mail:  liukw@ciomp.ac.cn;shendz@ciomp.ac.cn

Cite this article: 

Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振) Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier 2022 Chin. Phys. B 31 106101

[1] Liu K, Sakurai M and Aono M 2010 Sensors (Basel) 10 8604
[2] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493
[3] Higashiwaki M, Kaplar R, Pernot J and Zhao H 2021 Appl. Phys. Lett. 118 200401
[4] Chen X, Wang L, Liu K, Zhang Z, Li B, Wu J, Wang J, Ni Y and Shen D 2020 J. Mater. Chem. C 8 1089
[5] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598
[6] Ma H, Liu K, Cheng Z, Zheng Z, Liu Y, Zhang P, Chen X, Liu D, Liu L and Shen D 2021 Chin. Phys. B 30 087303
[7] Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503
[8] Chen Y, Su L, Jiang M and Fang X 2022 J. Mater. Sci. Technol. 105 259
[9] Yang J, Liu K, Chen X and Shen D 2022 Prog. Quant. Electron. 83 100397
[10] Mauthe S, Baumgartner Y, Sousa M, Ding Q, Rossell M D, Schenk A, Czornomaz L and Moselund K E 2020 Nat. Commun. 11 4565
[11] Zhao X, Li Q, Xu L, Zhang Z, Kang Z, Liao Q and Zhang Y 2021 Adv. Funct. Mater. 32 2106887
[12] Shen G and Chen D 2010 Recent Pat. Nanotech. 4 20
[13] Yan R, Gargas D and Yang P 2009 Nat. Photonics 3 569
[14] Tian W, Lu H and Li L 2015 Nano Res. 8 382
[15] Jia C, Lin Z, Huang Y and Duan X 2019 Chem. Rev. 119 9074
[16] Kumar D, Bai R, Chaudhary S and Pandya D 2017 Mater. Today Energy 6 105
[17] Tien L C, Shih Y, Chen C, Huang Y and Chen R 2021 J. Alloy. Compd. 876 160195
[18] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light Sci. Appl. 9 160
[19] Zhang X, Liu B, Liu Q, Yang W, Xiong C, Li J and Jiang X 2017 ACS Appl. Mater. Inter. 9 2669
[20] Gonzalez-Posada F, Songmuang R, Den Hertog M and Monroy E 2012 Nano Lett. 12 172
[21] Delaunay P, Nguyen B M, Hofman D and Razeghi M 2007 Appl. Phys. Lett. 91 231106
[22] Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X and Li S 2014 Nanoscale 6 12009
[23] Dai J, Xu C, Xu X, Guo J, Li J, Zhu G and Lin Y 2013 ACS Appl. Mater. Inter. 5 9344
[24] Liu K, Sakurai M, Aono M and Shen D 2015 Adv. Funct. Mater. 25 3157
[25] Liu X, Gu L, Zhang Q, Wu J, Long Y and Fan Z 2014 Nat. Commun. 5 4007
[26] Soci C, Zhang A, Xiang B, Dayeh S A, Dpr Aplin, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[27] Shi L, Wang F, Li B, Chen X, Yao B, Zhao D and Shen D 2014 J. Mater. Chem. C 2 5005
[28] Shi H, Cheng B, Cai Q, Su X, Xiao Y and Lei S 2016 J. Mater. Chem. C 4 8399
[29] Fu X W, Liao Z M, Xu J, Wu X S, Guo W and Yu D P 2013 Nanoscale 5 916
[30] Das S N, Moon K, Kar J P, Choi J, Xiong J, Lee T and Myoung J 2010 Appl. Phys. Lett. 97 022103
[31] Chai G Y, Chow L, Lupan O, Rusu E, Stratan G I, Heinrich H, Ursaki V V and Tiginyanu I M 2011 Solid State Sci. 13 1205
[32] Li H, Zhang X, Liu N, Ding L, Tao J, Wang S, Su J, Li L and Gao Y 2015 Opt. Express 23 21204
[33] Ghamgosar P, Rigoni F, You S, Dobryden I, Kohan M G, Pellegrino A L, Concina I, Almqvist N, Malandrino G and Vomiero A 2018 Nano Energy 51 308
[34] Luo Y, Dong Z, Chen Y, Zhang Y, Lu Y, Xia T, Wang L, Li S, Zhang W, Xiang W, Shan C and Guo H 2019 Opt. Mater. Express 9 2775
[35] Zhu X, Lin F, Chen X, Zhang Z, Chen X, Wang D, Tang J, Fang X, Fang D, Liao L and Wei Z 2020 Nanotechnology 31 444001
[36] Gou G, Dai G, Qian C, Liu Y, Fu Y, Tian Z, He Y, Kong L, Yang J, Sun J and Gao Y 2016 Nanoscale 8 14580
[37] Li F, Meng Y, Dong R, Yip S, Lan C, Kang X, Wang F, Chan K S and Ho J C 2019 ACS Nano 13 12042
[38] Gou G, Dai G, Wang X, Chen Y, Qian C, Kong L, Sun J and Yang J 2017 Appl. Phys. A-Mater. 123 731
[39] Chen Y, Wang Y, Wang Z, et al. 2021 Nat. Electron. 4 357
[40] Wu P, Ye L, Tong L, Wang P, Wang Y, Wang H, Ge H, Wang Z, Gu Y, Zhang K, Yu Y, Peng M, Wang F, Huang M, Zhou P and Hu W 2022 Light-Sci. Appl. 11 6
[41] Ge H, Xie R, Guo J, Li Q, Yu Y, He J, Wang F, Wang P and Hu W 2022 Acta. Phys. Sin. 71 110703 (in Chinese)
[42] Wu Y, Fan R and Yang P 2002 Nano Lett. 2 83
[43] Clark T E, Nimmatoori P, Lew K K, Ling P and Dickey E C 2008 Nano Lett. 8 1246
[44] Tian B, Xie P, Kempa T J, Bell D C and Lieber C M 2009 Nat. Nanotechnol. 4 824
[45] Wang Z 2009 Mat. Sci. Eng. R. 64 33
[46] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264
[47] Qi J, Hu X, Wang Z, Li X, Liu W and Zhang Y 2014 Nanoscale 6 6025
[48] Ai Q, Liu K, Ma H, Yang J, Chen X, Li B and Shen D 2018 J. Mater. Chem. C 6 11368
[49] Harada Y, Tanahashi I and Ohno N 2009 J. Lumin. 129 1759
[50] Lu Y, Zhang Z, Yang X, He G, Lin C, Chen X, Zang J, Zhao W, Chen Y, Zhang L, Li Y and Shan C 2022 Nano Res. 15 7631
[51] Wang X, Cheng Z, Xu K, Tsang H K and Xu J 2013 Nat. Photonics. 7 888
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[14] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!