|
|
Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier |
Yinzhe Liu(刘寅哲)1,2, Kewei Liu(刘可为)1,2,†, Jialin Yang(杨佳霖)1,2, Zhen Cheng(程祯)1,2, Dongyang Han(韩冬阳)1,2, Qiu Ai(艾秋)1,2, Xing Chen(陈星)1,2, Yongxue Zhu(朱勇学)1,2, Binghui Li(李炳辉)1,2, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2,‡ |
1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract One-dimensional (1D) micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors. However, in the axial direction of micro/nanowires, the carriers can transport freely driven by an external electric field, which usually produces large dark current and low detectivity. Here, an UV photodetector built from three cross-intersecting ZnO microwires with double homo-interfaces is demonstrated by the chemical vapor deposition and physical transfer techniques. Compared with the reference device without interface, the dark current of this ZnO double-interface photodetector is significantly reduced by nearly 5 orders of magnitude, while the responsivity decreases slightly, thereby greatly improving the normalized photocurrent-to-dark current ratio. In addition, ZnO double-interface photodetector exhibits a much faster response speed (~ 0.65 s) than the no-interface device (~ 95 s). The improved performance is attributed to the potential barriers at the microwire—microwire homo-interfaces, which can regulate the carrier transport. Our findings in this work provide a promising approach for the design and development of high-performance photodetectors.
|
Received: 12 June 2022
Revised: 11 July 2022
Accepted manuscript online:
|
PACS:
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
62.23.Hj
|
(Nanowires)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902,12074372, 11774341, 11974344, 61975204, and 11804335), the National Ten Thousand Talent Program for Young Topnotch Talents, the Key Research and Development Program of Changchun City (Grant No. 21ZY05), the 100 Talents Program of the Chinese Academy of Sciences, Youth Innovation Promotion Association, CAS (Grant No. 2020225), Jilin Province Science Fund (Grant No. 20210101145JC), and XuGuang Talents Plan of CIOMP. |
Corresponding Authors:
Kewei Liu, Dezhen Shen
E-mail: liukw@ciomp.ac.cn;shendz@ciomp.ac.cn
|
Cite this article:
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振) Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier 2022 Chin. Phys. B 31 106101
|
[1] Liu K, Sakurai M and Aono M 2010 Sensors (Basel) 10 8604 [2] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493 [3] Higashiwaki M, Kaplar R, Pernot J and Zhao H 2021 Appl. Phys. Lett. 118 200401 [4] Chen X, Wang L, Liu K, Zhang Z, Li B, Wu J, Wang J, Ni Y and Shen D 2020 J. Mater. Chem. C 8 1089 [5] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598 [6] Ma H, Liu K, Cheng Z, Zheng Z, Liu Y, Zhang P, Chen X, Liu D, Liu L and Shen D 2021 Chin. Phys. B 30 087303 [7] Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503 [8] Chen Y, Su L, Jiang M and Fang X 2022 J. Mater. Sci. Technol. 105 259 [9] Yang J, Liu K, Chen X and Shen D 2022 Prog. Quant. Electron. 83 100397 [10] Mauthe S, Baumgartner Y, Sousa M, Ding Q, Rossell M D, Schenk A, Czornomaz L and Moselund K E 2020 Nat. Commun. 11 4565 [11] Zhao X, Li Q, Xu L, Zhang Z, Kang Z, Liao Q and Zhang Y 2021 Adv. Funct. Mater. 32 2106887 [12] Shen G and Chen D 2010 Recent Pat. Nanotech. 4 20 [13] Yan R, Gargas D and Yang P 2009 Nat. Photonics 3 569 [14] Tian W, Lu H and Li L 2015 Nano Res. 8 382 [15] Jia C, Lin Z, Huang Y and Duan X 2019 Chem. Rev. 119 9074 [16] Kumar D, Bai R, Chaudhary S and Pandya D 2017 Mater. Today Energy 6 105 [17] Tien L C, Shih Y, Chen C, Huang Y and Chen R 2021 J. Alloy. Compd. 876 160195 [18] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light Sci. Appl. 9 160 [19] Zhang X, Liu B, Liu Q, Yang W, Xiong C, Li J and Jiang X 2017 ACS Appl. Mater. Inter. 9 2669 [20] Gonzalez-Posada F, Songmuang R, Den Hertog M and Monroy E 2012 Nano Lett. 12 172 [21] Delaunay P, Nguyen B M, Hofman D and Razeghi M 2007 Appl. Phys. Lett. 91 231106 [22] Wang X, Zhang Y, Chen X, He M, Liu C, Yin Y, Zou X and Li S 2014 Nanoscale 6 12009 [23] Dai J, Xu C, Xu X, Guo J, Li J, Zhu G and Lin Y 2013 ACS Appl. Mater. Inter. 5 9344 [24] Liu K, Sakurai M, Aono M and Shen D 2015 Adv. Funct. Mater. 25 3157 [25] Liu X, Gu L, Zhang Q, Wu J, Long Y and Fan Z 2014 Nat. Commun. 5 4007 [26] Soci C, Zhang A, Xiang B, Dayeh S A, Dpr Aplin, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003 [27] Shi L, Wang F, Li B, Chen X, Yao B, Zhao D and Shen D 2014 J. Mater. Chem. C 2 5005 [28] Shi H, Cheng B, Cai Q, Su X, Xiao Y and Lei S 2016 J. Mater. Chem. C 4 8399 [29] Fu X W, Liao Z M, Xu J, Wu X S, Guo W and Yu D P 2013 Nanoscale 5 916 [30] Das S N, Moon K, Kar J P, Choi J, Xiong J, Lee T and Myoung J 2010 Appl. Phys. Lett. 97 022103 [31] Chai G Y, Chow L, Lupan O, Rusu E, Stratan G I, Heinrich H, Ursaki V V and Tiginyanu I M 2011 Solid State Sci. 13 1205 [32] Li H, Zhang X, Liu N, Ding L, Tao J, Wang S, Su J, Li L and Gao Y 2015 Opt. Express 23 21204 [33] Ghamgosar P, Rigoni F, You S, Dobryden I, Kohan M G, Pellegrino A L, Concina I, Almqvist N, Malandrino G and Vomiero A 2018 Nano Energy 51 308 [34] Luo Y, Dong Z, Chen Y, Zhang Y, Lu Y, Xia T, Wang L, Li S, Zhang W, Xiang W, Shan C and Guo H 2019 Opt. Mater. Express 9 2775 [35] Zhu X, Lin F, Chen X, Zhang Z, Chen X, Wang D, Tang J, Fang X, Fang D, Liao L and Wei Z 2020 Nanotechnology 31 444001 [36] Gou G, Dai G, Qian C, Liu Y, Fu Y, Tian Z, He Y, Kong L, Yang J, Sun J and Gao Y 2016 Nanoscale 8 14580 [37] Li F, Meng Y, Dong R, Yip S, Lan C, Kang X, Wang F, Chan K S and Ho J C 2019 ACS Nano 13 12042 [38] Gou G, Dai G, Wang X, Chen Y, Qian C, Kong L, Sun J and Yang J 2017 Appl. Phys. A-Mater. 123 731 [39] Chen Y, Wang Y, Wang Z, et al. 2021 Nat. Electron. 4 357 [40] Wu P, Ye L, Tong L, Wang P, Wang Y, Wang H, Ge H, Wang Z, Gu Y, Zhang K, Yu Y, Peng M, Wang F, Huang M, Zhou P and Hu W 2022 Light-Sci. Appl. 11 6 [41] Ge H, Xie R, Guo J, Li Q, Yu Y, He J, Wang F, Wang P and Hu W 2022 Acta. Phys. Sin. 71 110703 (in Chinese) [42] Wu Y, Fan R and Yang P 2002 Nano Lett. 2 83 [43] Clark T E, Nimmatoori P, Lew K K, Ling P and Dickey E C 2008 Nano Lett. 8 1246 [44] Tian B, Xie P, Kempa T J, Bell D C and Lieber C M 2009 Nat. Nanotechnol. 4 824 [45] Wang Z 2009 Mat. Sci. Eng. R. 64 33 [46] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264 [47] Qi J, Hu X, Wang Z, Li X, Liu W and Zhang Y 2014 Nanoscale 6 6025 [48] Ai Q, Liu K, Ma H, Yang J, Chen X, Li B and Shen D 2018 J. Mater. Chem. C 6 11368 [49] Harada Y, Tanahashi I and Ohno N 2009 J. Lumin. 129 1759 [50] Lu Y, Zhang Z, Yang X, He G, Lin C, Chen X, Zang J, Zhao W, Chen Y, Zhang L, Li Y and Shan C 2022 Nano Res. 15 7631 [51] Wang X, Cheng Z, Xu K, Tsang H K and Xu J 2013 Nat. Photonics. 7 888 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|