Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087304    DOI: 10.1088/1674-1056/ac0a5e
RAPID COMMUNICATION Prev   Next  

Magneto-transport properties of thin flakes of Weyl semiconductor tellurium

Nan Zhang(张南)1,2, Bin Cheng(程斌)1,2, Hui Li(李惠)3, Lin Li(李林)1,2,†, and Chang-Gan Zeng(曾长淦)1,2,‡
1 International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information&Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  As an elemental semiconductor, tellurium has recently attracted intense interest due to its non-trivial band topology, and the resulted intriguing topological transport phenomena. In this study we report systematic electronic transport studies on tellurium flakes grown via a simple vapor deposition process. The sample is self-hole-doped, and exhibits typical weak localization behavior at low temperatures. Substantial negative longitudinal magnetoresistance under parallel magnetic field is observed over a wide temperature region, which is considered to share the same origin with that in tellurium bulk crystals, i.e., the Weyl points near the top of valence band. However, with lowering temperature the longitudinal magnetoconductivity experiences a transition from parabolic to linear field dependency, differing distinctly from the bulk counterparts. Further analysis reveals that such a modulation of Weyl behaviors in this low-dimensional tellurium structure can be attributed to the enhanced inter-valley scattering at low temperatures. Our results further extend Weyl physics into a low-dimensional semiconductor system, which may find its potential application in designing topological semiconductor devices.
Keywords:  Weyl physics      tellurium flakes      negative longitudinal magnetoresistance  
Received:  07 June 2021      Revised:  07 June 2021      Accepted manuscript online:  11 June 2021
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.61.Cw (Elemental semiconductors)  
  73.20.Fz (Weak or Anderson localization)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC07010000), the National Natural Science Foundation of China (Grant Nos. 11974324, U1832151, 11804326, and 11904001), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative Fund in Quantum Information Technologies (Grant No. AHY170000), and the Fund from the Hefei Science Center, Chinese Academy of Sciences (Grant No. 2020HSC-UE014).
Corresponding Authors:  Lin Li, Chang-Gan Zeng     E-mail:  lilin@ustc.edu.cn;cgzeng@ustc.edu.cn

Cite this article: 

Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦) Magneto-transport properties of thin flakes of Weyl semiconductor tellurium 2021 Chin. Phys. B 30 087304

[1] Hirayama M, Okugawa R, Ishibashi S, Murakami S and Miyake T 2015 Phys. Rev. Lett. 114 206401
[2] Anzin V B, Eremets M I, Kosichkin Y V, Nadezhdinskii A I and Shirokov A M 1977 Phys. Status Solidi A 42 385
[3] Gerlach E and Grosse P 1979 The Physics of Selenium and Tellurium (New York: USA Springer)
[4] He Z, Yang Y, Liu J and Yu S 2017 Chem. Soc. Rev. 46 2732
[5] Wu W, Qiu G, Wang Y, Wang R and Ye P 2018 Chem. Soc. Rev. 47 7203
[6] Agapito L A, Kioussis N, Goddard W A and Ong N P 2013 Phys. Rev. Lett. 110 176401
[7] Tsirkin S S, Souza I and Vanderbilt D 2017 Phys. Rev. B 96 045102
[8] Murakami S, Hirayama M, Okugawa R and Miyake T 2017 Sci. Adv. 3 e1602680
[9] Nakayama K, Kuno M, Yamauchi K, Souma S, Sugawara K, Oguchi T, Sato T and Takahashi T 2017 Phys. Rev. B 95 125204
[10] Tsirkin S S, Puente P A and Souza I 2018 Phys. Rev. B 97 035158
[11] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530
[12] Qiu G, Niu C, Wang Y, Si M, Zhang Z, Wu W and Ye P D 2020 Nat. Nanotechnol. 15 585
[13] Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z and Zeng C 2020 Proc. Natl. Acad. Sci. USA 117 11337
[14] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J, Xu X, Ye P D and Wu W 2018 Nat. Electron. 1 228
[15] Amani M, Tan C, Zhang G, Zhao C, Bullock J, Song X, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M and Javey A 2018 ACS Nano 12 7253
[16] Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965
[17] Qiu G, Wang Y, Nie Y, Zheng Y, Cho K, Wu W and Ye P D 2018 Nano Lett. 18 5760
[18] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Phys. Rev. B 101 205414
[19] Ren X, Wang Y, Xie Z, Xue F, Leighton C and Frisbie C D 2019 Nano Lett. 19 4738
[20] Wang Q, Safdar M, Xu K, Mirza M, Wang Z and He J 2014 ACS Nano 8 7497
[21] Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (New York: McGraw-Hill)
[22] Von Klitzing K and Landwehr G 1971 Solid State Commun. 9 2201
[23] Berezovets V A, Farbshtein I I and Shelankov A L 1984 JETP Lett. 39 74
[24] Tanuma S 1954 Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6 159
[25] Englert T, von Klitzing K, Silbermann R and Landwehr G 1977 Phys. Status Solidi B 81 119
[26] Lu H and Shen S 2017 Front. Phys. 12 127201
[27] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[28] Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
[29] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[30] Li C, Wang L, Liu H, Wang J, Liao Z and Yu D 2015 Nat. Commun. 6 10137
[31] Li H, He H, Lu H, Zhang H, Liu H, Ma R, Fan Z, Shen S and Wang J 2016 Nat. Commun. 7 10301
[32] Zhang C, Xu S, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C, Huang S, Chang T R, Chang G, Hsu C, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H, Shen S, Neupert T, Zahid Hasan M and Jia S 2016 Nat. Commun. 7 10735
[33] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[34] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[35] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin Carina A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161
[36] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
[37] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142
[38] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F and Yuan H Q 2018 Nat. Commun. 9 4622
[39] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[40] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[41] Burkov A A 2014 Phys. Rev. Lett. 113 247203
[42] Goswami P, Pixley J H and Das Sarma S 2015 Phys. Rev. B 92 075205
[43] Ji X, Lu H, Zhu Z and Su G 2017 AIP Adv. 7 105003
[44] Ji X, Lu H, Zhu Z and Su G 2018 J. Appl. Phys. 123 203901
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[4] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[5] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[6] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[7] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[13] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[14] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[15] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
No Suggested Reading articles found!