|
|
Magneto-transport properties of thin flakes of Weyl semiconductor tellurium |
Nan Zhang(张南)1,2, Bin Cheng(程斌)1,2, Hui Li(李惠)3, Lin Li(李林)1,2,†, and Chang-Gan Zeng(曾长淦)1,2,‡ |
1 International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information&Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 2 CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China |
|
|
Abstract As an elemental semiconductor, tellurium has recently attracted intense interest due to its non-trivial band topology, and the resulted intriguing topological transport phenomena. In this study we report systematic electronic transport studies on tellurium flakes grown via a simple vapor deposition process. The sample is self-hole-doped, and exhibits typical weak localization behavior at low temperatures. Substantial negative longitudinal magnetoresistance under parallel magnetic field is observed over a wide temperature region, which is considered to share the same origin with that in tellurium bulk crystals, i.e., the Weyl points near the top of valence band. However, with lowering temperature the longitudinal magnetoconductivity experiences a transition from parabolic to linear field dependency, differing distinctly from the bulk counterparts. Further analysis reveals that such a modulation of Weyl behaviors in this low-dimensional tellurium structure can be attributed to the enhanced inter-valley scattering at low temperatures. Our results further extend Weyl physics into a low-dimensional semiconductor system, which may find its potential application in designing topological semiconductor devices.
|
Received: 07 June 2021
Revised: 07 June 2021
Accepted manuscript online: 11 June 2021
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.61.Cw
|
(Elemental semiconductors)
|
|
73.20.Fz
|
(Weak or Anderson localization)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC07010000), the National Natural Science Foundation of China (Grant Nos. 11974324, U1832151, 11804326, and 11904001), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative Fund in Quantum Information Technologies (Grant No. AHY170000), and the Fund from the Hefei Science Center, Chinese Academy of Sciences (Grant No. 2020HSC-UE014). |
Corresponding Authors:
Lin Li, Chang-Gan Zeng
E-mail: lilin@ustc.edu.cn;cgzeng@ustc.edu.cn
|
Cite this article:
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦) Magneto-transport properties of thin flakes of Weyl semiconductor tellurium 2021 Chin. Phys. B 30 087304
|
[1] Hirayama M, Okugawa R, Ishibashi S, Murakami S and Miyake T 2015 Phys. Rev. Lett. 114 206401 [2] Anzin V B, Eremets M I, Kosichkin Y V, Nadezhdinskii A I and Shirokov A M 1977 Phys. Status Solidi A 42 385 [3] Gerlach E and Grosse P 1979 The Physics of Selenium and Tellurium (New York: USA Springer) [4] He Z, Yang Y, Liu J and Yu S 2017 Chem. Soc. Rev. 46 2732 [5] Wu W, Qiu G, Wang Y, Wang R and Ye P 2018 Chem. Soc. Rev. 47 7203 [6] Agapito L A, Kioussis N, Goddard W A and Ong N P 2013 Phys. Rev. Lett. 110 176401 [7] Tsirkin S S, Souza I and Vanderbilt D 2017 Phys. Rev. B 96 045102 [8] Murakami S, Hirayama M, Okugawa R and Miyake T 2017 Sci. Adv. 3 e1602680 [9] Nakayama K, Kuno M, Yamauchi K, Souma S, Sugawara K, Oguchi T, Sato T and Takahashi T 2017 Phys. Rev. B 95 125204 [10] Tsirkin S S, Puente P A and Souza I 2018 Phys. Rev. B 97 035158 [11] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530 [12] Qiu G, Niu C, Wang Y, Si M, Zhang Z, Wu W and Ye P D 2020 Nat. Nanotechnol. 15 585 [13] Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z and Zeng C 2020 Proc. Natl. Acad. Sci. USA 117 11337 [14] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J, Xu X, Ye P D and Wu W 2018 Nat. Electron. 1 228 [15] Amani M, Tan C, Zhang G, Zhao C, Bullock J, Song X, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M and Javey A 2018 ACS Nano 12 7253 [16] Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965 [17] Qiu G, Wang Y, Nie Y, Zheng Y, Cho K, Wu W and Ye P D 2018 Nano Lett. 18 5760 [18] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Phys. Rev. B 101 205414 [19] Ren X, Wang Y, Xie Z, Xue F, Leighton C and Frisbie C D 2019 Nano Lett. 19 4738 [20] Wang Q, Safdar M, Xu K, Mirza M, Wang Z and He J 2014 ACS Nano 8 7497 [21] Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (New York: McGraw-Hill) [22] Von Klitzing K and Landwehr G 1971 Solid State Commun. 9 2201 [23] Berezovets V A, Farbshtein I I and Shelankov A L 1984 JETP Lett. 39 74 [24] Tanuma S 1954 Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6 159 [25] Englert T, von Klitzing K, Silbermann R and Landwehr G 1977 Phys. Status Solidi B 81 119 [26] Lu H and Shen S 2017 Front. Phys. 12 127201 [27] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 [28] Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press) [29] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 [30] Li C, Wang L, Liu H, Wang J, Liao Z and Yu D 2015 Nat. Commun. 6 10137 [31] Li H, He H, Lu H, Zhang H, Liu H, Ma R, Fan Z, Shen S and Wang J 2016 Nat. Commun. 7 10301 [32] Zhang C, Xu S, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C, Huang S, Chang T R, Chang G, Hsu C, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H, Shen S, Neupert T, Zahid Hasan M and Jia S 2016 Nat. Commun. 7 10735 [33] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [34] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023 [35] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin Carina A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161 [36] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550 [37] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 [38] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F and Yuan H Q 2018 Nat. Commun. 9 4622 [39] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414 [40] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412 [41] Burkov A A 2014 Phys. Rev. Lett. 113 247203 [42] Goswami P, Pixley J H and Das Sarma S 2015 Phys. Rev. B 92 075205 [43] Ji X, Lu H, Zhu Z and Su G 2017 AIP Adv. 7 105003 [44] Ji X, Lu H, Zhu Z and Su G 2018 J. Appl. Phys. 123 203901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|