Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073101    DOI: 10.1088/1674-1056/abeeeb
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2

Hui Wan(万惠)1, Zhixiao Liu(刘智骁)1, Guangdong Liu(刘广东)2, Shuaiyu Yi(易帅玉)2, Fei Gao(高飞)3, Huiqiu Deng(邓辉球)2, Dingwang Yuan(袁定旺)1, and Wangyu Hu(胡望宇)1,†
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Abstract  Ni-rich layered lithium transition metal oxides LiNixMnyCozO2 (1 - y-z ≥ 0.6) are promising candidates for cathode materials, but their practical applications are hindered by high-voltage instability and fast capacity fading. Using density functional theory calculations, we demonstrate that Na-, F-doping, and Na/F-co-doping can stabilize the structure and result into a higher open circuit voltage than pristine LiNi0.6Mn0.2Co0.2O2 (NMC622) during the charging process, which may attain greater discharge capacity. F doping may inhibit the diffusion of Li ions at the beginning and end of charging; Na doping may improve Li ion diffusion due to the increase in Li layer spacing, consistent with prior experiments. Na/F-co-doping into NMC622 promotes rate performance and reduces irreversible phase transitions for two reasons: (i) a synergistic effect between Na and F can effectively restrain the Ni/Li mixing and then enhances the mobility of Li ions and (ii) Ni/Li mixing hinders the Ni ions to migrate into Li layers and thus, stabilizes the structure. This study proposes that a layer cathode material with high electrochemical performance can be achieved via rational dopant modification, which is a promising strategy for designing efficient Li ion batteries.
Keywords:  Li ion batteries      ion diffusion      Na/F-co-doping      first-principles calculations  
Received:  06 January 2021      Revised:  20 February 2021      Accepted manuscript online:  16 March 2021
PACS:  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802092 and 51771073) and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Wangyu Hu     E-mail:  wyuhu@hnu.edu.cn

Cite this article: 

Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇) A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2 2021 Chin. Phys. B 30 073101

[1] Yang Z, Zhang W, Shen Y, Yuan L X and Huang Y H 2016 Acta Phys-Chim. Sin. 32 1062
[2] Wu M S, Xu B and Ouyang C Y 2016 Chin. Phys. B 25 018206
[3] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[4] Li Y, Wang S, Chen Y, Lei T, Deng S, Zhu J, Zhang J and Guo J 2020 Mater. Chem. Phys. 240 122029
[5] Yu X Q, Hu E Y, Bak S, Zhou Y N and Yang X Q 2016 Chin. Phys. B 25 018205
[6] Pang W K, Lin H F, Peterson V K, Lu C Z, Liu C E, Liao S C and Chen J M 2017 Chem. Mater. 29 10299
[7] Li Q, Liu Z, Zheng F, Liu R, Lee J, Xu G L, Zhong G, Hou X, Fu R, Chen Z, Amine K, Mi J, Wu S, Grey C P and Yang Y 2018 Angew. Chem. Int. Ed. 57 11918
[8] Manthiram A, Knight J C, Myung S T, Oh S M and Sun Y K 2016 Adv. Energy Mater. 6 1501010
[9] Mu L, Zhang R, Kan W H, Zhang Y, Li L, Kuai C, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L and Lin F 2019 Chem. Mater. 31 9769
[10] Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C and Zhang J G 2018 Nat. Energy 3 600
[11] Zhang Y, Su Z, Yao X and Wang Y B 2015 Rsc Adv. 5 90150
[12] Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung S T and Sun Y K 2010 Adv. Mater. 22 3052
[13] Hashigami S, Kato Y, Yoshimi K, Yoshida H, Inagaki T, Hashinokuchi M, Doi T and Inaba M 2018 Electrochim. Acta 291 304
[14] Dianat A, Seriani N, Bobeth M and Cuniberti G 2013 J. Mater. Chem. A 1 9273
[15] Duc L V and Lee J W 2018 J. Solid State Electrochem. 22 1165
[16] Li Y Y, Si Y, Han E X, Huang W Q, Hu W, Pan A, Fan X and Huang G F 2020 J. Phys. D: Appl. Phys. 53 015502
[17] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S 2017 Appl. Phys. A-Mater. 123 96
[18] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L 2020 Natl. Sci. Rev. 7 1768
[19] Li L J, Wang Z X, Liu Q C, Ye C, Chen Z Y and Gong L 2012 Electrochim. Acta 77 89
[20] Kang K S, Meng Y S, Breger J, Grey C P and Ceder G 2006 Science 311 977
[21] Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q and Yang Z 2015 Electrochim. Acta 182 795
[22] Li Y H, Liu J Y, Lei Y K, Lai C Y and Xu Q J 2017 J. Mater. Sci. 52 13596
[23] Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson E M, Ghanty C, Major D T, Markovsky B and Aurbach D 2016 J. Mater. Chem. A 4 16073
[24] Yiming W, Giuli G, Moretti A, Nobili F, Fehr K T, Paris E and Marassi R 2015 Mater. Chem. Phys. 155 191
[25] Na S H, Kim H S and Moon S I 2005 Solid State Ionics 176 313
[26] Yue P, Wang Z X, Li X H, Xiong X H, Wang J X, Wu X W and Guo H J 2013 Electrochim. Acta 95 112
[27] Yue P, Wang Z, Wang J, Guo H, Xiong X and Li X 2013 Powder Technol. 237 623
[28] Zhou S, Wang G X, Tang W J, Xiao Y and Yan K P 2018 Electrochim. Acta 261 565
[29] Wang D, Wang Z X, Li X H, Guo H J, Xu Y, Fan Y L and Pan W 2016 Appl. Surf. Sci. 371 172
[30] Yang Z, Zhang Z, Pan Y, Zhao S, Huang Y, Wang X, Chen X and Wei S 2016 J. Solid State Chem. 244 52
[31] Huang Z, Wang Z, Jing Q, Guo H, Li X and Yang Z 2016 Electrochim. Acta 192 120
[32] Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo X D, Zhong B, Wang Y J and Wang X 2014 Dalton T. 43 14824
[33] Wu K, Jia G, Shangguan X, Yang G, Zhu Z, Peng Z, Zhuge Q, Li F, Cui X and Liu S 2018 Energy Technol. 6 1885
[34] Wang Y Y, Sun Y Y, Liu S, Li G R and Gao X P 2018 Acs Appl. Energ. Mater. 1 3881
[35] Su J, Pei Y, Yang Z and Wang X 2015 Comput. Mater. Sci. 98 304
[36] Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H and Peng P 2014 Appl. Phys. A-Mater. 116 741
[37] Li H, Yang X and Zhang H 2020 Chin. Phys. B 29 060502
[38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[41] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[44] Zeng D, Cabana J, Breger J, Yoon W S and Grey C P 2007 Chem. Mater. 19 6277
[45] Naghash A R and Lee J Y 2001 Electrochim. Acta 46 2293
[46] Wang J, Lin W, Wu B and Zhao J 2014 Electrochim. Acta 145 245
[47] Min K, Kim K, Jung C, Seo S W, Song Y Y, Lee H S, Shin J and Cho E 2016 J. Power Sources 315 111
[48] Min K, Seo S W, Song Y Y, Lee H S and Cho E 2017 Phys. Chem. Chem. Phys. 19 1762
[49] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[50] Wang M, Chen Y, Wu F, Su Y, Chen L and Wang D 2010 Electrochim. Acta 55 8815
[51] Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q and Fu Z W 2017 Nat. Commun. 8 566
[52] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 4529
[53] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
[54] Han J, Liu P, Ito Y, Guo X, Hirata A, Fujita T and Chen M 2018 Nano Energy 45 273
[55] Dixit M, Markovsky B, Aurbach D and Major D T 2017 J. Electrochem. Soc. 164 A6359
[56] Hu G, Gan Z, Cao Y, Du K, Du Y and Peng Z 2018 Electrochim. Acta 292 502
[57] Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K and Pan F 2015 J. Am. Chem. Soc. 137 8364
[58] Lv W J, Huang Z, Yin Y X, Yao H R, Zhu H L and Guo Y G 2019 ChemNanoMat 5 1253
[59] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. Engl. 54 4440
[60] Gao A, Sun Y, Zhang Q, Zheng J and Lu X 2020 J. Mater. Chem. A 8 6337
[61] Zhao R R, Yang Z L, Liang J X, Lu D L, Liang C C, Guan X C, Gao A M and Chen H Y 2016 J. Alloys Compd. 689 318
[62] Tang Z F, Wang S, Liao J Y, Wang S, He X D, Pan B C, He H Y and Chen C H 2019 Research 2198906
[63] Yan P, Zheng J, Zhang J G and Wang C 2017 Nano Lett. 17 3946
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!