Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073101    DOI: 10.1088/1674-1056/abeeeb

A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2

Hui Wan(万惠)1, Zhixiao Liu(刘智骁)1, Guangdong Liu(刘广东)2, Shuaiyu Yi(易帅玉)2, Fei Gao(高飞)3, Huiqiu Deng(邓辉球)2, Dingwang Yuan(袁定旺)1, and Wangyu Hu(胡望宇)1,†
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Abstract  Ni-rich layered lithium transition metal oxides LiNixMnyCozO2 (1 - y-z ≥ 0.6) are promising candidates for cathode materials, but their practical applications are hindered by high-voltage instability and fast capacity fading. Using density functional theory calculations, we demonstrate that Na-, F-doping, and Na/F-co-doping can stabilize the structure and result into a higher open circuit voltage than pristine LiNi0.6Mn0.2Co0.2O2 (NMC622) during the charging process, which may attain greater discharge capacity. F doping may inhibit the diffusion of Li ions at the beginning and end of charging; Na doping may improve Li ion diffusion due to the increase in Li layer spacing, consistent with prior experiments. Na/F-co-doping into NMC622 promotes rate performance and reduces irreversible phase transitions for two reasons: (i) a synergistic effect between Na and F can effectively restrain the Ni/Li mixing and then enhances the mobility of Li ions and (ii) Ni/Li mixing hinders the Ni ions to migrate into Li layers and thus, stabilizes the structure. This study proposes that a layer cathode material with high electrochemical performance can be achieved via rational dopant modification, which is a promising strategy for designing efficient Li ion batteries.
Keywords:  Li ion batteries      ion diffusion      Na/F-co-doping      first-principles calculations  
Received:  06 January 2021      Revised:  20 February 2021      Accepted manuscript online:  16 March 2021
PACS:  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802092 and 51771073) and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Wangyu Hu     E-mail:

Cite this article: 

Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇) A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2 2021 Chin. Phys. B 30 073101

[1] Yang Z, Zhang W, Shen Y, Yuan L X and Huang Y H 2016 Acta Phys-Chim. Sin. 32 1062
[2] Wu M S, Xu B and Ouyang C Y 2016 Chin. Phys. B 25 018206
[3] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[4] Li Y, Wang S, Chen Y, Lei T, Deng S, Zhu J, Zhang J and Guo J 2020 Mater. Chem. Phys. 240 122029
[5] Yu X Q, Hu E Y, Bak S, Zhou Y N and Yang X Q 2016 Chin. Phys. B 25 018205
[6] Pang W K, Lin H F, Peterson V K, Lu C Z, Liu C E, Liao S C and Chen J M 2017 Chem. Mater. 29 10299
[7] Li Q, Liu Z, Zheng F, Liu R, Lee J, Xu G L, Zhong G, Hou X, Fu R, Chen Z, Amine K, Mi J, Wu S, Grey C P and Yang Y 2018 Angew. Chem. Int. Ed. 57 11918
[8] Manthiram A, Knight J C, Myung S T, Oh S M and Sun Y K 2016 Adv. Energy Mater. 6 1501010
[9] Mu L, Zhang R, Kan W H, Zhang Y, Li L, Kuai C, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L and Lin F 2019 Chem. Mater. 31 9769
[10] Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C and Zhang J G 2018 Nat. Energy 3 600
[11] Zhang Y, Su Z, Yao X and Wang Y B 2015 Rsc Adv. 5 90150
[12] Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung S T and Sun Y K 2010 Adv. Mater. 22 3052
[13] Hashigami S, Kato Y, Yoshimi K, Yoshida H, Inagaki T, Hashinokuchi M, Doi T and Inaba M 2018 Electrochim. Acta 291 304
[14] Dianat A, Seriani N, Bobeth M and Cuniberti G 2013 J. Mater. Chem. A 1 9273
[15] Duc L V and Lee J W 2018 J. Solid State Electrochem. 22 1165
[16] Li Y Y, Si Y, Han E X, Huang W Q, Hu W, Pan A, Fan X and Huang G F 2020 J. Phys. D: Appl. Phys. 53 015502
[17] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S 2017 Appl. Phys. A-Mater. 123 96
[18] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L 2020 Natl. Sci. Rev. 7 1768
[19] Li L J, Wang Z X, Liu Q C, Ye C, Chen Z Y and Gong L 2012 Electrochim. Acta 77 89
[20] Kang K S, Meng Y S, Breger J, Grey C P and Ceder G 2006 Science 311 977
[21] Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q and Yang Z 2015 Electrochim. Acta 182 795
[22] Li Y H, Liu J Y, Lei Y K, Lai C Y and Xu Q J 2017 J. Mater. Sci. 52 13596
[23] Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson E M, Ghanty C, Major D T, Markovsky B and Aurbach D 2016 J. Mater. Chem. A 4 16073
[24] Yiming W, Giuli G, Moretti A, Nobili F, Fehr K T, Paris E and Marassi R 2015 Mater. Chem. Phys. 155 191
[25] Na S H, Kim H S and Moon S I 2005 Solid State Ionics 176 313
[26] Yue P, Wang Z X, Li X H, Xiong X H, Wang J X, Wu X W and Guo H J 2013 Electrochim. Acta 95 112
[27] Yue P, Wang Z, Wang J, Guo H, Xiong X and Li X 2013 Powder Technol. 237 623
[28] Zhou S, Wang G X, Tang W J, Xiao Y and Yan K P 2018 Electrochim. Acta 261 565
[29] Wang D, Wang Z X, Li X H, Guo H J, Xu Y, Fan Y L and Pan W 2016 Appl. Surf. Sci. 371 172
[30] Yang Z, Zhang Z, Pan Y, Zhao S, Huang Y, Wang X, Chen X and Wei S 2016 J. Solid State Chem. 244 52
[31] Huang Z, Wang Z, Jing Q, Guo H, Li X and Yang Z 2016 Electrochim. Acta 192 120
[32] Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo X D, Zhong B, Wang Y J and Wang X 2014 Dalton T. 43 14824
[33] Wu K, Jia G, Shangguan X, Yang G, Zhu Z, Peng Z, Zhuge Q, Li F, Cui X and Liu S 2018 Energy Technol. 6 1885
[34] Wang Y Y, Sun Y Y, Liu S, Li G R and Gao X P 2018 Acs Appl. Energ. Mater. 1 3881
[35] Su J, Pei Y, Yang Z and Wang X 2015 Comput. Mater. Sci. 98 304
[36] Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H and Peng P 2014 Appl. Phys. A-Mater. 116 741
[37] Li H, Yang X and Zhang H 2020 Chin. Phys. B 29 060502
[38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[41] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[44] Zeng D, Cabana J, Breger J, Yoon W S and Grey C P 2007 Chem. Mater. 19 6277
[45] Naghash A R and Lee J Y 2001 Electrochim. Acta 46 2293
[46] Wang J, Lin W, Wu B and Zhao J 2014 Electrochim. Acta 145 245
[47] Min K, Kim K, Jung C, Seo S W, Song Y Y, Lee H S, Shin J and Cho E 2016 J. Power Sources 315 111
[48] Min K, Seo S W, Song Y Y, Lee H S and Cho E 2017 Phys. Chem. Chem. Phys. 19 1762
[49] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[50] Wang M, Chen Y, Wu F, Su Y, Chen L and Wang D 2010 Electrochim. Acta 55 8815
[51] Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q and Fu Z W 2017 Nat. Commun. 8 566
[52] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 4529
[53] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
[54] Han J, Liu P, Ito Y, Guo X, Hirata A, Fujita T and Chen M 2018 Nano Energy 45 273
[55] Dixit M, Markovsky B, Aurbach D and Major D T 2017 J. Electrochem. Soc. 164 A6359
[56] Hu G, Gan Z, Cao Y, Du K, Du Y and Peng Z 2018 Electrochim. Acta 292 502
[57] Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K and Pan F 2015 J. Am. Chem. Soc. 137 8364
[58] Lv W J, Huang Z, Yin Y X, Yao H R, Zhu H L and Guo Y G 2019 ChemNanoMat 5 1253
[59] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. Engl. 54 4440
[60] Gao A, Sun Y, Zhang Q, Zheng J and Lu X 2020 J. Mater. Chem. A 8 6337
[61] Zhao R R, Yang Z L, Liang J X, Lu D L, Liang C C, Guan X C, Gao A M and Chen H Y 2016 J. Alloys Compd. 689 318
[62] Tang Z F, Wang S, Liao J Y, Wang S, He X D, Pan B C, He H Y and Chen C H 2019 Research 2198906
[63] Yan P, Zheng J, Zhang J G and Wang C 2017 Nano Lett. 17 3946
[1] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[2] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[3] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[4] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[5] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[6] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[7] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[8] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[9] Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春). Chin. Phys. B, 2021, 30(11): 117105.
[10] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[11] Band engineering of honeycomb monolayer CuSe via atomic modification
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(10): 106807.
[12] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[13] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[14] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[15] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
No Suggested Reading articles found!