Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057101    DOI: 10.1088/1674-1056/abddac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet

Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙)
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B3C2N3 and BC6N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B3C2N3 and BC6N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B3C2N3 and BC6N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC6N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-Ⅱ energy band alignment could be designed using B3C2N3 and BC6N monolayers. All the above-mentioned characteristics make B3C2N3 and BC6N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices, metal-free photocatalysts, and photovoltaic cells.
Keywords:  first-principles calculations      α-graphyne like structures      valleytronic materials      wide band gap semiconductors  
Received:  17 December 2020      Revised:  14 January 2021      Accepted manuscript online:  20 January 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11847065) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211115).
Corresponding Authors:  Bo Chen     E-mail:  chenbo@tyut.edu.cn

Cite this article: 

Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙) First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet 2021 Chin. Phys. B 30 057101

[1] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055
[2] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[3] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[5] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[7] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[8] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[9] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L and Feng J 2012 Nat. Commun. 3 887
[10] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[11] Yun W S, Han S W, Hong S C, Kim I G and Lee J D 2012 Phys. Rev. B 85 033305
[12] Singh R S, Tay R Y, Chow W L, Tsang S H, Mallick G and Teo E H T 2014 Appl. Phys. Lett. 104 163101
[13] Mahvash F, Paradis E, Drouin D, Szkopek T and Siaj M 2015 Nano Lett. 15 2263
[14] Kaloni T P, Joshi R P, Adhikari N P and Schwingenschlogl U 2014 Appl. Phys. Lett. 104 073116
[15] Song Z G, Lips Z W, Wang H, Bai X D, Wang W L, Du H L, Liu S Q, Wang C S, Han J Z, Yang Y C, Liu Z, Lu J, Fang Z Y and Yang J B 2017 Nano Lett. 17 2079
[16] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[21] Özçelik V O, Aktürk O Ü, Durgun E and Ciraci S 2015 Phys. Rev. B 92 125420
[22] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[24] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[25] Nóse S 1984 J. Chem. Phys. 81 511
[26] Hoover W G 1985 Phys. Rev. A 31 1695
[27] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[28] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[29] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[30] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[31] Wang V, Xu N, Liu J C, Tang G and Geng W T 2019 arXiv:1908.08269
[32] Singh N B, Bhattacharya B and Sarkar U 2014 Struct. Chem. 25 1695
[33] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[34] Jiao L, Hu M, Peng Y, Luo Y, Li C and Chen Z 2016 J. Solid State Chem. 244 120
[35] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[36] Özçelik V O and Ciraci S 2013 J. Phys. Chem. C 117 2175
[37] Di Quarto F, Sunseri C, Piazza S and Romano M C 1997 J. Phys. Chem. B 101 2519
[38] Qiao L, Zhang S, Xiao H Y, Singh D J, Zhang K H L, Liu Z J, Zu X T and Li S 2018 J. Mater. Chem. C 6 1239
[39] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[40] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[41] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108
[42] Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J and Zhua H Y 2016 J. Mater. Chem. C 4 3592
[43] Luo Y Z, Hu Y B and Xie Y Q 2019 J. Mater. Chem. A 7 27503
[44] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[45] Chen J M, Xi J Y, Wang D and Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443
[46] Phuc H V, Hieu N N, Hoi B D, Hieu N V, Thu T V, Hung N M, Ilyasov V V, Poklonski N A and Nguyen C V 2018 J. Electron. Mater. 47 730
[47] ahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[48] Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y P, Xia H, Zhang S B and Sun H B 2015 Phys. Rev. B 92 115307
[49] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R and Sumanasekera G U 2007 Science 318 1424
[50] Behzad S 2016 Solid State Commun. 248 27
[51] Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Z Y, Yan J F and Zhao W 2017 Comput. Mater. Sci. 136 12
[52] Sun S B, Dan J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C and Xu X L 2020 Chin. Phys. Lett. 37 087801
[53] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!