Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057101    DOI: 10.1088/1674-1056/abddac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet

Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙)
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B3C2N3 and BC6N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B3C2N3 and BC6N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B3C2N3 and BC6N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC6N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-Ⅱ energy band alignment could be designed using B3C2N3 and BC6N monolayers. All the above-mentioned characteristics make B3C2N3 and BC6N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices, metal-free photocatalysts, and photovoltaic cells.
Keywords:  first-principles calculations      α-graphyne like structures      valleytronic materials      wide band gap semiconductors  
Received:  17 December 2020      Revised:  14 January 2021      Accepted manuscript online:  20 January 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11847065) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211115).
Corresponding Authors:  Bo Chen     E-mail:  chenbo@tyut.edu.cn

Cite this article: 

Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙) First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet 2021 Chin. Phys. B 30 057101

[1] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055
[2] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[3] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[5] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[7] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[8] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[9] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L and Feng J 2012 Nat. Commun. 3 887
[10] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[11] Yun W S, Han S W, Hong S C, Kim I G and Lee J D 2012 Phys. Rev. B 85 033305
[12] Singh R S, Tay R Y, Chow W L, Tsang S H, Mallick G and Teo E H T 2014 Appl. Phys. Lett. 104 163101
[13] Mahvash F, Paradis E, Drouin D, Szkopek T and Siaj M 2015 Nano Lett. 15 2263
[14] Kaloni T P, Joshi R P, Adhikari N P and Schwingenschlogl U 2014 Appl. Phys. Lett. 104 073116
[15] Song Z G, Lips Z W, Wang H, Bai X D, Wang W L, Du H L, Liu S Q, Wang C S, Han J Z, Yang Y C, Liu Z, Lu J, Fang Z Y and Yang J B 2017 Nano Lett. 17 2079
[16] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[21] Özçelik V O, Aktürk O Ü, Durgun E and Ciraci S 2015 Phys. Rev. B 92 125420
[22] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[24] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[25] Nóse S 1984 J. Chem. Phys. 81 511
[26] Hoover W G 1985 Phys. Rev. A 31 1695
[27] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[28] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[29] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[30] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[31] Wang V, Xu N, Liu J C, Tang G and Geng W T 2019 arXiv:1908.08269
[32] Singh N B, Bhattacharya B and Sarkar U 2014 Struct. Chem. 25 1695
[33] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[34] Jiao L, Hu M, Peng Y, Luo Y, Li C and Chen Z 2016 J. Solid State Chem. 244 120
[35] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[36] Özçelik V O and Ciraci S 2013 J. Phys. Chem. C 117 2175
[37] Di Quarto F, Sunseri C, Piazza S and Romano M C 1997 J. Phys. Chem. B 101 2519
[38] Qiao L, Zhang S, Xiao H Y, Singh D J, Zhang K H L, Liu Z J, Zu X T and Li S 2018 J. Mater. Chem. C 6 1239
[39] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[40] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[41] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108
[42] Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J and Zhua H Y 2016 J. Mater. Chem. C 4 3592
[43] Luo Y Z, Hu Y B and Xie Y Q 2019 J. Mater. Chem. A 7 27503
[44] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[45] Chen J M, Xi J Y, Wang D and Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443
[46] Phuc H V, Hieu N N, Hoi B D, Hieu N V, Thu T V, Hung N M, Ilyasov V V, Poklonski N A and Nguyen C V 2018 J. Electron. Mater. 47 730
[47] ahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[48] Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y P, Xia H, Zhang S B and Sun H B 2015 Phys. Rev. B 92 115307
[49] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R and Sumanasekera G U 2007 Science 318 1424
[50] Behzad S 2016 Solid State Commun. 248 27
[51] Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Z Y, Yan J F and Zhao W 2017 Comput. Mater. Sci. 136 12
[52] Sun S B, Dan J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C and Xu X L 2020 Chin. Phys. Lett. 37 087801
[53] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304
[1] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[2] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[3] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[4] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[5] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[6] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[7] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[8] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[9] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[10] Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春). Chin. Phys. B, 2021, 30(11): 117105.
[11] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[12] Band engineering of honeycomb monolayer CuSe via atomic modification
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(10): 106807.
[13] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
No Suggested Reading articles found!