Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117401    DOI: 10.1088/1674-1056/abbbea
Special Issue: SPECIAL TOPIC —Twistronics
TOPICAL REVIEW—Twistronics Prev   Next  

Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics

Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

We review the recent discoveries of exotic phenomena in graphene, especially superconductivity. It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials. For single-layer pristine graphene, there are theoretical predictions that spin-singlet d + id pairing superconductivity is present when the filling is around the Dirac point. If the Fermi level is doped to the Van Hove singularity where the density of states diverges, then unconventional superconductivity with other pairing symmetry would appear. However, the experimental perspective was a bit disappointing. Despite extensive experimental efforts, superconductivity was not found in monolayer graphene. Recently, unconventional superconductivity was found in magic-angle twisted bilayer graphene. Superconductivity was also found in ABC stacked trilayer graphene and other systems. In this article, we review the unique properties of superconducting states in graphene, experimentally controlling the superconductivity in twisted bilayer graphene, as well as a gate-tunable Mott insulator, and the superconductivity in trilayer graphene. These discoveries have attracted the attention of a large number of physicists. The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.

Keywords:  graphene      twisted multilayer graphene      superconductivity  
Received:  02 June 2020      Revised:  25 August 2020      Accepted manuscript online:  28 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11774033 and 11974049) and Beijing Natural Science Foundation, China (Grant No. 1192011).
Corresponding Authors:  Corresponding author. E-mail: txma@bnu.edu.cn   

Cite this article: 

Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星) Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics 2020 Chin. Phys. B 29 117401

Fig. 1.  

(a) When a graphene bilayer is twisted so that the top sheet is rotated out of alignment with the lower sheet, the unit cell (the smallest repeating unit of the material’s 2D lattice) becomes enlarged; (b) for small rotation angles, a moiré pattern is produced in which the local stacking arrangement varies periodically.

Fig. 2.  

(a) Two superconducting domes are observed next to the half-filling state which is labeled Mott and centered around –ns/2 = –1.58 × 1012 cm−2. The remaining regions in the diagram are labeled as metal owing to the metallic temperature dependence. The highest critical temperature observed is Tc = 0.5 K (at 50% of the normal-state resistance). (b) Two asymmetric and overlapping domes are shown. The highest critical temperature is Tc = 1.7 K. Reproduced with permission from Ref. [28].

Fig. 3.  

Crystal structure of ABA (a) and ABC (b) trilayer graphene.

Fig. 4.  

Carrier-density-dependent phase diagram. Rxx represents the gate-dependent four-probe resistance, a function of the carrier density and temperature at D = –0.54 V/nm. R0 = 380 Ω. Reproduced with permission from Ref. [141].

[1]
Wallace P R 1947 Phys. Rev. 71 622 DOI: 10.1103/PhysRev.71.622
[2]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.109
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197 DOI: 10.1038/nature04233
[4]
Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201 DOI: 10.1038/nature04235
[5]
Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801 DOI: 10.1038/nphys2208
[6]
Honerkamp C 2008 Phys. Rev. Lett. 100 146404 DOI: doi/10.1103/PhysRevLett.100.146404
[7]
Baskaran G 2002 Phys. Rev. B 65 212505 DOI: 10.1103/PhysRevB.65.212505
[8]
Pathak S, Shenoy V B, Baskaran G 2010 Phys. Rev. B 81 085431 DOI: 10.1103/PhysRevB.81.085431
[9]
Ma T, Huang Z, Hu F, Lin H Q 2011 Phys. Rev. B 84 121410 DOI: 10.1103/PhysRevB.84.121410
[10]
Lin H Q, Ma T, Huang Z 2015 Mathematical Methods in the Applied Sciences 38 4487 https://ui.adsabs.harvard.edu/abs/2015MMAS…38.4487L
[11]
Black-Schaffer A M, Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201 DOI: 10.1088/0953-8984/26/42/423201
[12]
Martin I, Batista C D 2008 Phys. Rev. Lett. 101 156402 DOI: 10.1103/PhysRevLett.101.156402
[13]
Li T 2012 Europhys. Lett. 97 37001 DOI: 10.1209/0295-5075/97/37001
[14]
Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Phys. Rev. B 85 035414 DOI: 10.1103/PhysRevB.85.035414
[15]
Kiesel M L, Platt C, Hanke W, Abanin D A, Thomale R 2012 Phys. Rev. B 86 020507 DOI: 10.1103/PhysRevB.86.020507
[16]
Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158 DOI: 10.1038/nphys2208
[17]
González J 2008 Phys. Rev. B 78 205431 DOI: 10.1103/PhysRevB.78.205431
[18]
Black-Schaffer A M, Doniach S 2007 Phys. Rev. B 75 134512 DOI: 10.1103/PhysRevB.75.134512
[19]
Pathak S, Shenoy V B, Baskaran G 2010 Phys. Rev. B 81 085431 DOI: 10.1103/PhysRevB.81.085431
[20]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[21]
Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
[22]
Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415 DOI: 10.1103/PhysRevB.99.155415
[23]
Ma T, Yang F, Yao H, Lin H 2014 Phys. Rev. B 90 245114 DOI: 10.1103/PhysRevB.90.245114
[24]
Yao H, Yang F 2015 Phys. Rev. B 92 035132 DOI: 10.1103/PhysRevB.92.035132
[25]
Chen X, Yao Y, Yao H, Yang F, Ni J 2015 Phys. Rev. B 92 174503 DOI: 10.1103/PhysRevB.92.174503
[26]
Ma T, Lin H, Gubernatis J E 2015 Europhys. Lett. 111 47003 DOI: 10.1038/nature26154
[27]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80 DOI: 10.1038/nature26160
[28]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarilloherrero P 2018 Nature 556 43 http://arxiv.org/abs/arXiv:1903.08130
[29]
Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv:1903.08130
[30]
Julku A, Peltonen T, Liang L, Heikkilä T, Törmä P 2020 Phys. Rev. B 101 060505 DOI: 10.1103/PhysRevB.101.060505
[31]
Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101 DOI: 10.1038/s41586-019-1422-x
[32]
Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237 DOI: 10.1038/s41567-018-0387-2
[33]
Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001 DOI: 10.1103/PhysRevLett.121.217001
[34]
Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059 http://science.sciencemag.org/content/363/6431/1059
[35]
Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021 DOI: 10.1103/PhysRevX.9.031021
[36]
Padhi B, Phillips P 2019 Phys. Rev. B 99 205141 DOI: 10.1103/PhysRevB.99.205141
[37]
Arora H, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I, Xu X, Chu J, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379 DOI: 10.1038/s41586-020-2473-8
[38]
Esquinazi P, Heikkilä T T, Lysogorskiy Y, Tayurskii D, Volovik G 2014 Jetp Lett. 100 336 DOI: 10.1134/S0021364014170056
[39]
Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135 DOI: 10.1103/PhysRevB.100.115135
[40]
Volovik G 2018 Jetp Lett. 107 516 DOI: 10.1134/S0021364018080052
[41]
Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089 DOI: 10.1103/PhysRevX.8.031089
[42]
Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041 DOI: 10.1103/PhysRevX.8.041041
[43]
Xu C, Balents L 2018 Phys. Rev. Lett. 121 087001 DOI: 10.1103/PhysRevLett.121.087001
[44]
Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121 257001 DOI: 10.1103/PhysRevLett.121.257001
[45]
Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002 DOI: 10.1103/PhysRevLett.122.257002
[46]
Kozii V, Isobe H, Venderbos J W F, Fu L 2019 Phys. Rev. B 99 144507 DOI: 10.1103/PhysRevB.99.144507
[47]
Wu F 2019 Phys. Rev. B 99 195114 DOI: 10.1103/PhysRevB.99.195114
[48]
Roy B, Juričić V 2019 Phys. Rev. B 99 121407 DOI: 10.1103/PhysRevB.99.121407
[49]
Tang Q K, Yang L, Wang D, Zhang F C, Wang Q H 2019 Phys. Rev. B 99 094521 DOI: 10.1103/PhysRevB.99.094521
[50]
Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv:2003.09513
[51]
Liu Z, Li Y, Yang Y F 2019 Chin. Phys. B 28 077103 DOI: 10.1088/1674-1056/28/7/077103
[52]
Huang T, Zhang L, Ma T 2019 Science Bulletin 64 310 DOI: 10.1016/j.scib.2019.01.026
[53]
Yang F, Liu C C, Zhang Y Z, Yao Y, Lee D H 2015 Phys. Rev. B 91 134514 DOI: 10.1103/PhysRevB.91.134514
[54]
Chen W, Chu Y, Huang T, Ma T 2020 Phys. Rev. B 101 155413 DOI: 10.1103/PhysRevB.101.155413
[55]
Lin Y P, Nandkishore R M 2018 Phys. Rev. B 98 214521 DOI: 10.1103/PhysRevB.98.214521
[56]
Kennes D, Lischner J, Karrasch C 2018 Phys. Rev. B 98 241407 DOI: 10.1103/PhysRevB.98.241407
[57]
González J, Stauber T 2019 Phys. Rev. Lett. 122 026801 DOI: 10.1103/PhysRevLett.122.026801
[58]
You Y Z, Vishwanath A 2019 arXiv:1805.06867 DOI: 10.1103/PhysRevResearch.2.022040
[59]
Sharma G, Trushin M, Sushkov O, Vignale G, Adam S 2020 Phys. Rev. Research 2 022040 DOI: 10.1038/s41586-019-1695-0
[60]
Lu X, Stepanov P, Yang W, Xie M, Aamir M, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A, Efetov D 2019 Nature 574 653 DOI: 10.1038/s41598-019-57055-w
[61]
Talantsev E, Mataira R, Crump W 2020 Phys. Rev. B 10 212 DOI: 10.1038/s41598-019-57055-w
[62]
Scheurer M, Samajdar R 2020 Phys. Rev. Research 2 033062 DOI: 10.1103/PhysRevResearch.2.033062
[63]
Samajdar R, Scheurer M 2020 Phys. Rev. B 102 064501 DOI: 10.1103/PhysRevB.102.064501
[64]
Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401 DOI: 10.1103/PhysRevLett.122.246401
[65]
Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Research 1 033126 DOI: 10.1103/PhysRevResearch.1.033126
[66]
Sboychakov A O, Rozhkov A V, Rakhmanov A L, Nori F 2019 Phys. Rev. B 100 045111 DOI: 10.1103/PhysRevB.100.045111
[67]
Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406 DOI: 10.1103/PhysRevB.98.121406
[68]
Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601 DOI: 10.1103/PhysRevLett.124.097601
[69]
Liu J, Dai X 2019 arXiv:1911.03760
[70]
Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv:1905.07409
[71]
Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv:1911.02045
[72]
Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103 DOI: 10.1103/PhysRevB.98.045103
[73]
Kang J, Vafek O 2018 Phys. Rev. X 8 031088 DOI: 10.1103/PhysRevX.8.031088
[74]
Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087 DOI: 10.1103/PhysRevX.8.031087
[75]
Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.195455
[76]
Carr S, Fang S, Po H C, Vishwanath A, Kaxiras E 2019 Phys. Rev. Research 1 033072 DOI: 10.1103/PhysRevResearch.1.033072
[77]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449 DOI: 10.1103/PhysRevB.86.155449
[78]
Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451 DOI: 10.1103/PhysRevB.90.155451
[79]
Poncharal P, Ayari A, Michel T, Sauvajol J L 2008 Phys. Rev. B 78 113407 DOI: 10.1103/PhysRevB.78.113407
[80]
Ni Z, Wang Y, Yu T, You Y, Shen Z 2008 Phys. Rev. B 77 235403 DOI: 10.1103/PhysRevB.77.235403
[81]
Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett. 100 125504 DOI: 10.1103/PhysRevLett.100.125504
[82]
Varchon F, Mallet P, Magaud L, Veuillen J Y 2008 Phys. Rev. B 77 165415 DOI: 10.1103/PhysRevB.77.165415
[83]
Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802 DOI: 10.1103/PhysRevLett.106.126802
[84]
Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E, Beechem T E 2012 Phys. Rev. Lett. 109 186807 DOI: 10.1103/PhysRevLett.109.186807
[85]
Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fèvre P, de Heer W A, Berger C, Conrad E H 2011 Phys. Rev. B 83 205403 DOI: 10.1103/PhysRevB.83.205403
[86]
Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H, He L 2017 Phys. Rev. B 96 155416 DOI: 10.1103/PhysRevB.96.155416
[87]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 DOI: 10.1103/PhysRevLett.99.256802
[88]
Suárez Morell E, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407 DOI: 10.1103/PhysRevB.82.121407
[89]
Wu C, Das Sarma S 2008 Phys. Rev. B 77 235107 DOI: 10.1103/PhysRevB.77.235107
[90]
Wu C 2008 Phys. Rev. Lett. 101 186807 DOI: 10.1103/PhysRevLett.101.186807
[91]
Zhang G F, Li Y, Wu C 2014 Phys. Rev. B 90 075114 DOI: 10.1103/PhysRevB.90.075114
[92]
Liu C C, Guan S, Song Z, Yang S A, Yang J, Yao Y 2014 Phys. Rev. B 90 085431 DOI: 10.1103/PhysRevB.90.085431
[93]
Liu J, Dai X 2019 arXiv:1907.08932
[94]
Yuan N F Q, Fu L 2018 Phys. Rev. B 98 079901 DOI: 10.1103/PhysRevB.98.079901
[95]
Sherkunov Y, Betouras J J 2018 Phys. Rev. B 98 205151 DOI: 10.1103/PhysRevB.98.205151
[96]
MacDonald A H 2019 Physics 12 12 https://physics.aps.org/articles/v12/12
[97]
Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yan R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520 DOI: 10.1038/s41567-020-0825-9
[98]
Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221 DOI: 10.1038/s41586-020-2458-7
[99]
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215 DOI: 10.1038/s41586-020-2260-6
[100]
Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702 DOI: 10.1103/PhysRevLett.123.197702
[101]
Aoki M, Amawashi H 2007 Solid State Commun. 142 123 http://www.sciencedirect.com/science/article/pii/S0038109807001184
[102]
Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427 DOI: 10.1103/PhysRevB.73.144427
[103]
Guinea F, Castro Neto A H, Peres N M R 2006 Phys. Rev. B 73 245426 DOI: 10.1103/PhysRevB.73.245426
[104]
Latil S, Henrard L 2006 Phys. Rev. Lett. 97 036803 DOI: 10.1103/PhysRevLett.97.036803
[105]
Partoens B, Peeters F M 2007 Phys. Rev. B 75 193402 DOI: 10.1103/PhysRevB.75.193402
[106]
Koshino M, Ando T 2008 Phys. Rev. B 77 115313 DOI: 10.1103/PhysRevB.77.115313
[107]
Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F, Tarucha S 2009 Nat. Nanotechnol. 4 383 DOI: 10.1038/nnano.2009.89
[108]
Avetisyan A A, Partoens B, Peeters F M 2009 Phys. Rev. B 79 035421 DOI: 10.1103/PhysRevB.79.035421
[109]
Avetisyan A A, Partoens B, Peeters F M 2009 Phys. Rev. B 80 195401 DOI: 10.1103/PhysRevB.80.195401
[110]
Koshino M 2010 Phys. Rev. B 81 125304 DOI: 10.1103/PhysRevB.81.1253041
[111]
Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101 DOI: 10.1063/1.3595335
[112]
Wu B R 2011 Appl. Phys. Lett. 98 263107 DOI: 10.1063/1.3604019
[113]
Tang K, Qin R, Zhou J, Qu H, Zheng J, Fei R, Li H, Zheng Q, Gao Z, Lu J 2011 J. Phys. Chem. C 115 9458 DOI: 10.1021/jp201761p
[114]
Lui Ch H, Li Z, Mak K F, Cappelluti E, Heinz T F 2011 Nat. Phys. 7 944 DOI: 10.1038/nphys2102
[115]
Bao W, Jing L, Velasco J Jr Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C N 2011 Nat. Phys. 7 948 DOI: 10.1038/nphys2103
[116]
Nandkishore R, Levitov L 2010 Phys. Rev. B 82 115124 DOI: 10.1103/PhysRevB.82.115124
[117]
Vafek O, Yang K 2010 Phys. Rev. B 81 041401 DOI: 10.1103/PhysRevB.81.041401
[118]
Zhang F, Min H, Polini M, MacDonald A H 2010 Phys. Rev. B 81 041402 DOI: 10.1103/PhysRevB.81.041402
[119]
Weitz R T, Allen M T, Feldman B E, Martin J, Yacoby A 2010 Science 330 812 https://science.sciencemag.org/content/330/6005/812
[120]
Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802 DOI: 10.1103/PhysRevLett.101.096802
[121]
Xu Du, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491 DOI: 10.1038/nnano.2008.199
[122]
Ando T 2006 J. Phys. Soc. Jpn. 75 074716 DOI: 10.1143/JPSJ.75.074716
[123]
Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806 DOI: 10.1103/PhysRevLett.98.186806
[124]
Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602 DOI: 10.1103/PhysRevLett.98.076602
[125]
Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer Michael S 2008 Nat. Nanotechnol. 3 206 DOI: 10.1038/nnano.2008.58
[126]
Katsnelson M I, Geim A K 2008 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 366 195 DOI: 10.1098/rsta.2007.2157
[127]
Fratini S, Guinea F 2008 Phys. Rev. B 77 195415 DOI: 10.1103/PhysRevB.77.195415
[128]
Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643 DOI: 10.1021/nl070613a
[129]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602 DOI: 10.1103/PhysRevLett.100.016602
[130]
Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 DOI: 10.1038/nmat1849
[131]
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A 2007 Nat. Phys. 4 144 DOI: 10.1038/nphys781
[132]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722 DOI: 10.1038/nnano.2010.172
[133]
Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy Brian J 2011 Nat. Mater. 10 282 DOI: 10.1038/nmat2968
[134]
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J., and I, shigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598 DOI: 10.1038/nature12186
[135]
Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427 https://science.sciencemag.org/content/340/6139/1427
[136]
Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, Fal’Ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotechnol. 9 808 DOI: 10.1038/nnano.2014.187
[137]
Mott N F 1949 Proc. Phys. Soc. Sec. A 62 416 DOI: 10.1088
[138]
Hubbard J 1964 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 277 237 DOI: 10.1098/rspa.1964.0019
[139]
Masatoshi I, Atsushi F, Yoshinori T 1998 Rev. Mod. Phys. 70 1039 DOI: 10.1103/RevModPhys.70.1039
[140]
Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.17
[141]
Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K J, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215 DOI: 10.1038/s41586-019-1393-y
[142]
Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B S, Li H Y, Watanabe K J, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56 DOI: 10.1038/s41586-020-2049-7
[143]
Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127 DOI: 10.1103/PhysRevB.99.075127
[144]
Chittari B L, Chen G R, Zhang Y B, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401 DOI: 10.1103/PhysRevLett.122.016401
[145]
Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900 https://science.sciencemag.org/content/367/6480/900
[146]
Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150 DOI: 10.1103/PhysRevB.99.205150
[147]
Salamon T, Celi A, Chhajlany R W, Frérot I, Lewenstein M, Tarruell L, Rakshit D 2020 Phys. Rev. Lett. 125 030504 DOI: 10.1103/PhysRevLett.125.030504
[148]
Salamon T, Chhajlany R W, Dauphin A, Lewenstein M, Rakshit D 2020 arXiv:2008.02854
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[5] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[6] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[7] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[8] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[9] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[10] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[11] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[12] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[13] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[14] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[15] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
No Suggested Reading articles found!