Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117305    DOI: 10.1088/1674-1056/ab9de3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3

Q Mahmood1,2, †, N A Noor3, T Ghrib1,2, Nessrin A Kattan4, Asif Mahmood5,, ‡, and Shahid M Ramay6
1 Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441, Dammam, Saudi Arabia
2 Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441, Dammam, Saudi Arabia
3 Department of Physics, Riphah International University, Lahore, Pakistan
4 Department of Physics, Faculty of Science, Taibah University, Medina, Saudi Arabia
5 Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
6 Physics and Astronomy Department, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
Abstract  

The electronic and thermoelectric properties of alkali metal-based fluorides CsYbF3 and RbYbF3 are studied by using Wien2k and BoltzTraP codes. The structural and thermodynamic stability of these materials are confirmed by tolerance factor (0.94 and 0.99 for RbYbF3 and CsYbF3) and negative formation energy. The optimized lattice constants and bulk moduli are consistent with the results reported in the literature. The reported band gap for RbYbF3 is 0.86 eV which decreases to 0.83 eV by the replacement of Cs with Rb. The electrical and thermal conductivities along with Seebeck coefficients decrease with temperature rising from 0 K to 800 K. The large values of thermoelectric parameters for positive chemical potentials show that the character is dominated by electrons. The studied materials have figures of merit 0.82 and 0.81 at room temperature respectively, for RbYbF3 and CsYbF3 and increase with temperature rising. Therefore, the materials under study may have potential application values in thermoelectric generators and refrigerators.

Keywords:  density functional theory      thermodynamic stability      electrical conductivity      figure of merit  
Received:  03 May 2020      Revised:  04 May 2020      Accepted manuscript online:  18 June 2020
Fund: Two of the authors, Asif Mahmood and S M Ramay, were supported by the Deanship of Scientific Research at King Saud University (Grant No. RGP-311).
Corresponding Authors:  Corresponding author. E-mail: qmmustafa@iau.edu.sa Corresponding author. E-mail: ahayat@ksu.edu.sa   

Cite this article: 

Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3 2020 Chin. Phys. B 29 117305

Fig. 1.  

(a) Electronic structures, (b) energy band structure, figures of merit of (c) CsYbF3, (d) RbYbF3, and (e) calculated crystal structure of Rb/CsYbF3 formed by Xcrysden.

Fig. 2.  

Plot of optimized energy verses volume of CsYbF3 (red) and RbYbF3 (black) calculated by PBEsol approximation.

Parameter RbYbF3 CsYbF3
a0 4.60, 4.53a 4.67, 4.61a
B0/GPa 41.86 37.62
Δ H/(eV/unit cell) −2.50 −2.26
Band gap Eg(ΓΓ)/eV 0.86 0.83
Table 1.  

The calculated values of lattice constant a, bulk moduli B, enthalpy of formation Δ H, and band gap of fluoride-based perovskites RbYbF3 and CsYbF3.

Fig. 3.  

Electronic band structures of (a) RbYbF3 and (b) CsYbF3 calculated by PBEsol+mBJ potential.

Fig. 4.  

Electrical conductivity of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 5.  

Thermal conductivity of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 6.  

Seebeck coefficient of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 7.  

Power factor of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 8.  

Figure of merit (ZT) of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Perovskites σ/1018 (Ω ⋅ m ⋅ s)−1 κ/1014 (W/mK)−1 S/(μV/K) σS2/1012 (W/mK2 ⋅ s) ZT
RbYbF3 3.76 0.230 130.44 0.639 0.82
CsYbF3 3.86 0.235 128.60 0.638 0.81
Table 2.  

Calculated room temperature values of electrical conductivity (σ), thermal conductivity (κ), Seebeck coefficient (S), power factor (σ S2), and figure of merit (ZT) for fluoride-based perovskites RbYbF3 and CsYbF3.

[1]
Mathur N, andwood P L 2003 Phys. Today 56 25
[2]
Moskvin S, Makhnev A A, Nomerovannaya L V, Loshkareva N N, Balbashov A M 2010 Phys. Rev. B 82 035106 DOI: 10.1103/PhysRevB.82.035106
[3]
Weeks C, Franz M 2010 Phys. Rev. B 82 085310 DOI: 10.1103/PhysRevB.82.085310
[4]
Murtaza G, Ahmad I, Amin B, Afaq A, Maqbool M, Maqssod J, Khan I, Zahid M 2011 Opt. Mater. 33 553 DOI: 10.1016/j.optmat.2010.10.052
[5]
Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945 DOI: 10.1126/science.286.5441.945
[6]
Klauk H 2000 Phys. World 13 18
[7]
Ramesh R, Spaklin N A 2007 Nat. Mater. 6 21 DOI: 10.1038/nmat1805
[8]
Scott J F 2006 J. Phys.: Condens. Matter 18 R361
[9]
Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31 DOI: 10.1007/s10853-005-5915-7
[10]
Dar S A, Srivastava V, Sakalle U K, Parey V, Pagare G 2017 Mater. Res. Express 4 106104 DOI: 10.1088/2053-1591/aa90af
[11]
Huang K, Feng M, Goodenough J, Milliken C 1997 J. Electrochem. Soc. 144 3620 DOI: 10.1149/1.1838058
[12]
Rao K, Yoon K 2003 J. Mater. Sci. 383 91
[13]
Murtaza G, Ahmad I 2011 Physica B 406 3222 DOI: 10.1016/j.physb.2011.05.028
[14]
Murtaza G, Ahmad I, Maqbool M, Rahnamaye-Aliabad H A, Afaq A 2011 Chin. Phys. Lett. 281 17803
[15]
Ghebouli B, Ghebouli M A, Fatmi M, Bouhemodou A 2010 Solid State Commun. 150 1896 DOI: 10.1016/j.ssc.2010.07.041
[16]
Erum N, Iqbal M A 2017 Chin. Phys. B 26 047102 DOI: 10.1088/1674-1056/26/4/047102
[17]
Heaton R A, Harrison J G, Lin C C 1983 Phys. Rev. B 28 5992 DOI: 10.1103/PhysRevB.28.5992
[18]
Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313 DOI: 10.1021/jz501387m
[19]
Bai Y, Yu H, Zhu Z, Jiang K, Zhang T, Zhao N, Yang S, Yan H 2015 J. Mater. Chem. A 3 9098 DOI: 10.1039/C4TA05309E
[20]
Moreira R L, Dias A 2007 Phys. Chem. Solids 681 617
[21]
Wu G Q, Hoppe R 1983 Z. Anorp;. Allg. Chemie 504 55
[22]
Verma A S, Kumar A 2012 J. Alloys Compd. 541 210 DOI: 10.1016/j.jallcom.2012.07.027
[23]
Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P, Li C H 2006 Phys. Chem. Solids 67 1531 DOI: 10.1016/j.jpcs.2006.02.004
[24]
Verma A S, Jindal V K 2009 J. Alloys Compd. 485 514 DOI: 10.1016/j.jallcom.2009.06.001
[25]
Ubic R 2007 J. Am. Ceram. Soc. 90 3326 DOI: 10.1111/jace.2007.90.issue-10
[26]
Li J F, Liu WS, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152 DOI: 10.1038/asiamat.2010.138
[27]
Zhao L D, Berardan D, Pei Y L, Byl C, Pinsard-Gaudart L, Dragoe N 2010 Appl. Phys. Lett. 97 092118 DOI: 10.1063/1.3485050
[28]
Dehkordi A M, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng. R Rep. 97 1 DOI: 10.1016/j.mser.2015.08.001
[29]
Goldsmid H J 2010 Introduction to Thermoelectricity Berlin, Heidelberg Springer-Verlag DOI: 10.1016/j.physb.2017.07.044
[30]
Rahman G, Rahman A U 2017 Physica B 526 122 DOI: 10.1016/j.physb.2017.07.044
[31]
Amin B, Singh N, Tritt T M, Alshareef H N, Schwingenschlögl U 2013 Appl. Phys. Lett. 103 031907 DOI: 10.1063/1.4815928
[32]
Li H, Tang X, Zhang Q, Uher C 2009 Appl. Phys. Lett. 94 10114
[33]
Nam W H, Kim B B, Seo S G, Lim Y S, Kim J Y, Seo W S, Choi W K, Park H H, Lee J Y 2014 Nano Lett. 14 5104 DOI: 10.1021/nl5018089
[34]
Mallada C, Menendez J L, Dura O J, de la Torre M A R, Menendez R, Santamaria R 2017 J. Eur. Ceram. Soc. 37 3741 DOI: 10.1016/j.jeurceramsoc.2017.02.027
[35]
Blaha P, Schwarz K, Madsen G K, Kvasnicka D, Luitz J 2001 Wien2k An augmented plane wave+ local orbitals program for calculating crystal properties
[36]
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 DOI: 10.1073/pnas.30.9.244
[37]
Blaha P, Schwarz K, Sorantin P, Trickey S K 1990 Comput. Phys. Commun. 59 339
[38]
Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116 DOI: 10.1103/PhysRevB.73.235116
[39]
Becke A D 1988 Phys. Rev. A 38 3098 DOI: 10.1103/PhysRevA.38.3098
[40]
Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401 DOI: 10.1103/PhysRevLett.102.226401
[41]
Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.007
[42]
Ullah R, Ali M A, Murad S, Khan A, Dar S A, Mahmood I, Laref A 2019 Mater. Res. Express 6 125901 DOI: 10.1088/2053-1591/ab540e
[43]
Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G 2019 Inorganic chemistry 17 656
[44]
Young J, Rondinelli 2016 J. Phys. Chem. Lett. 7 918 DOI: 10.1021/acs.jpclett.6b00094
[45]
Mahmood Q, Hassan M, Noor N A 2016 J. Phys.: Condens. Matter 28 506001 DOI: 10.1088/0953-8984/28/50/506001
[46]
Sabir B, Murtaza G, Mahmood Q, Ahmad R, Bhamu K C 2017 Current Appl. Phys. 17 1539
[47]
Madsen G K H, Schwarz K, Singh D J 2006 Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.007
[48]
Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210 DOI: 10.1103/PhysRevB.68.125210
[49]
Bilal M, Saifullah Shafiq M, Khan B, Aliabad H A R, Asadabadi S J, Ahmed R, Ahmad I 2015 Phys. Lett. A 379 206 DOI: 10.1016/j.physleta.2014.11.016
[50]
Hassan M, Shahid A, Mahmood Q 2018 Solid State Commun. 270 92 DOI: 10.1016/j.ssc.2017.11.019
[51]
Mahmood Q, Hassan M, Ahmed S H A, Shahid A, Laref A 2018 J. Phys. Chem. Solid 20 87
[52]
Yasukawa M, Kono T, Ueda K, Yanagi H, Kim S W, Hosono H 2013 Solid State Commun. 172 49 DOI: 10.1016/j.ssc.2013.08.018
[53]
Hassan M, Mahmood Q, Ramay S M 2019 Mater. Res. Express 6 126110 DOI: 10.1088/2053-1591/ab5b3b
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
No Suggested Reading articles found!