Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117501    DOI: 10.1088/1674-1056/abb22d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates

Jiapeng Zhao(赵佳鹏)1, Qinhuang Guo(郭勤皇)1, Huizhong Yin(尹慧中)1, Jintang Zou(邹锦堂)2, Zhenjie Zhao(赵振杰)2, Wenjuan Cheng(程文娟)2, †, Dongmei Jiang(蒋冬梅)1, and Qingfeng Zhan(詹清峰)1,, ‡
1 Key Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2 Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Ministry of Education, Shanghai 200241, China
Abstract  

The magneto–mechanical coupling effect and magnetic anisotropy of Fe10Co90 (FeCo) films deposited on silicon wafer (Si), flexible polyethylene terephthalate (PET), freestanding polydimethylsiloxane (PDMS), and pre-stretched 20% PDMS substrates were studied in detail. The loop squareness ratio Mr/Ms and the coercive Hc of the FeCo film grown on a PET substrate can be obviously tuned by applying a small tensile-bending strain, and those of the FeCo film grown on a freestanding PDMS substrate can only be slightly changed when applying a relatively large tensile bending strain. For the FeCo film prepared on a 20% pre-stretched PDMS, a wrinkled morphology is obtained after removing the pre-strain. The wrinkled FeCo film can keep the magnetic properties unchanged when applying a relatively large tensile bending strain perpendicular to the wrinkles. This reveals that PDMS is an ideal substrate for magnetic films to realize flexible immutability. Our results may help for developing flexible magnetic devices.

Keywords:  flexible substrates      FeCo films      magnetic anisotropy      magneto-mechanical coupling effect  
Received:  10 May 2020      Revised:  22 July 2020      Accepted manuscript online:  25 August 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11674336 and 11874150).
Corresponding Authors:  Corresponding author. E-mail: wjcheng@phy.ecnu.edu.cn Corresponding author. E-mail: qfzhan@phy.ecnu.edu.cn   

Cite this article: 

Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰) Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates 2020 Chin. Phys. B 29 117501

Fig. 1.  

AFM images (10 × 10 μm2) of bare substrates of (a) rigid Si, (b) flexible PET, and (c) soft PDMS. AFM images (10 × 10 μm2) of the stacks of Ta(6 nm)/FeCo(40 nm)/Ta(6 nm) deposited on (d) Si, (e) PET, and (f) PDMS substrates.

Fig. 2.  

Angular dependence of (a) the loop squareness ratio Mr/Ms and (b) the coercivity Hc for the FeCo films grown on Si, PET, and freestanding PDMS substrates. The hysteresis loops measured along the easy axis (EA) and the hard axis (HA) for the FeCo films grown on Si, PET, and freestanding PDMS substrates.

Fig. 3.  

Hysteresis loops for FeCo films grown on the PET substrate acquired with magnetic field applied along (a) the easy axis (EA) and (b) the hard axis (HA) with different external tensile bending strains applied along the hard axis and the easy axis, respectively. Hysteresis loops for FeCo films grown on the freestanding PDMS substrate acquired with magnetic field applied along (c) the easy axis and (d) the hard axis with different external tensile bending strains applied along the hard axis and the easy axis, respectively. The insets correspondingly show the tensile bending strain dependence of the Mr/Ms ratio and the coercivity.

Fig. 4.  

(a) AFM image (40 × 40 μm2) for the wrinkled FeCo film grown on a 20% pre-stretched PDMS. (b) The corresponding angular dependence of the loop squareness ratio Mr/Ms and the coercive field Hc. (c) The typical hysteresis loops for the wrinkled FeCo film measured along the easy and hard axes. Hysteresis loops for the wrinkled FeCo film acquired along (d) the easy axis and (e) the hard axis with different external tensile bending strains applied perpendicular and parallel to the wrinkles, respectively. The insets correspondingly show the tensile bending strain dependence of the Mr/Ms ratio and the coercivity.

[1]
Kittel C 1947 Phys. Rev. 71 270 DOI: 10.1103/PhysRev.71.270.2
[2]
Phuoc N N Chapon P Acher O Ong C K 2013 J. Appl. Phys. 114 153903 DOI: 10.1063/1.4825225
[3]
Quandt E Ludwig A 1999 J. Appl. Phys. 85 6232 DOI: 10.1063/1.370231
[4]
Lisfi A Lodder J C Wormeester H Poelsema B 2002 Phys. Rev. B 66 174420 DOI: 10.1103/PhysRevB.66.174420
[5]
Fan X Xue D Lin M Zhang Z Guo D Jiang C Wei J 2008 Appl. Phys. Lett. 92 222505 DOI: 10.1063/1.2939439
[6]
Gul Qeemat He W Li Y Sun R Li N Yang X Li Y Gong Z Z Xie Z K Zhang X Q Cheng Z H 2018 Chin. Phys. B 27 097504 DOI: 10.1088/1674-1056/27/9/097504
[7]
Yoo J H Restorff J B Wun-Fogle M Flatau A B 2008 J. Appl. Phys. 103 07B325 DOI: 10.1063/1.2832433
[8]
Kuanr B K Camley R E Celinski Z 2003 J. Appl. Phys. 93 7723 DOI: 10.1063/1.1557964
[9]
Thevenard L Zeng H T Petit D Cowburn R P 2009 Appl. Phys. Lett. 95 232502 DOI: 10.1063/1.3271683
[10]
Ziberi B Frost F Höoche T Rauschenbach B 2005 Phys. Rev. B 72 235310 DOI: 10.1103/PhysRevB.72.235310
[11]
Vaz C A F Steinmuller S J Bland J A C 2007 Phys. Rev. B 75 132402 DOI: 10.1103/PhysRevB.75.132402
[12]
Liedke M O Körner M Lenz K Fritzsche M Ranjan M Keller A Lindner J 2013 Phys. Rev. B 87 024424 DOI: 10.1103/PhysRevB.87.024424
[13]
Liu H L Volodin A Temst K Vantomme A Van Haesendonck C 2015 Phys. Rev. B 91 104403 DOI: 10.1103/PhysRevB.91.104403
[14]
Chen K Frömter R Rössler S Mikuszeit N Oepen H P 2012 Phys. Rev. B 86 064432 DOI: 10.1103/PhysRevB.86.064432
[15]
Ki S Dho J 2015 Appl. Phys. Lett. 106 212404 DOI: 10.1063/1.4921784
[16]
Yang Y Yuan G Yan Z Wang Y Lu X Liu J M 2017 Adv. Mater. DOI: 10.1002/adma.201700425
[17]
Wang X W Gu Y Xiong Z P Cui Z Zhang T 2014 Adv. Mater 26 1336 DOI: 10.1002/adma.201304248
[18]
Nishibe Y Yamadera H Ohta N Tsukada K Ohmura Y 2003 IEEE. Trans. Magn. 39 571 DOI: 10.1109/TMAG.2002.806351
[19]
Zhang H Li Y Y Yang M Y Zhang B Yang G Wang S G Wang K Y 2015 Chin. Phys. B 24 077501 DOI: 10.1088/1674-1056/24/7/077501
[20]
Dai Guohong Xing Xiangjun Shen Yun Deng Xiaohua 2020 J. Phys. D: Appl. Phys. 53 055001 DOI: 10.1088/1361-6463/ab5464
[21]
Yang Y X Yuan G L Yan Z B Wang Y J Lu X B Liu J M 2017 Adv. Mater. DOI: 10.1002/adma.201700425
[22]
Shi Xiaohui Wu Mei Lai Zhengxun Li Xujing Gao Peng Mi Wenbo 2020 ACS Appl. Mater. Interfaces 12 27394 DOI: 10.1021/acsami.0c08042
[23]
Zhou L 2014 Research and exploration of new Fe-based magnetostrictive materials Master Dissertation HeBei HeBei University of Technology in Chinese DOI: https://www.doc88.com/p-4713147056319.html
[24]
Johnson M T Bloemen P H den Broeder F J A de Vries J 1996 Rep. Prog. Phys. 59 1409 DOI: 10.1088/0034-4885/59/11/002
[25]
Zhang X S Zhan Q F Dai G H Liu Y W Zuo Z H Yang H L Chen B Li R W 2013 Appl. Phys. Lett. 113 17A901 DOI: 10.1063/1.4776661
[26]
Dai G H Zhan Q F Liu Y W Yang H L Zhang X S Chen B Li R W 2012 Appl. Phys. Lett. 114 173913 DOI: 10.1063/1.3696887
[27]
Khang D Y Jiang H J Huang Y Rogers J A 2006 Science 311 208 DOI: 10.1126/science.1121401
[28]
Chen X Hutchinson J W 2004 J. Appl. Mech. 71 597 DOI: 10.1115/1.1756141
[29]
Huang Z Y Hong W Suo Z 2005 J. Mech. Phys. Solids 53 2101 DOI: 10.1016/j.jmps.2005.03.007
[30]
Zhou Y L Niinomi M Akahori T 2004 Mater. Sci. Eng. 371 283 DOI: 10.1016/j.msea.2003.12.011
[31]
Chaudhury M K Finlay J A Chung J Y Callow M E Callow J A 2005 Model. Network. Biofouling 21 41 DOI: 10.1080/08927010500044377
[32]
Chan K S Ji H Wang X Hudak S J Lanning B R 2006 Mater. Sci. Eng. A 298 DOI: 10.1016/j.msea.2006.02.035
[33]
Chen Y F Mei Y Kaltofen R Mönch J I Schumann Freudenberger J Klauß H J Schmidt O G 2008 Adv. Mater. 20 3224 DOI: 10.1002/adma.200800230
[34]
Melzer M Karnaushenko D Lin G Baunack S Makarov D Schmidt O G 2015 Adv. Mater. 27 1333 DOI: 10.1002/adma.201403998
[35]
Li H H Zhan Q F Liu Y W Liu L P Yang H L Zuo Z H Shang T Wang B M Li R W 2016 ACS Nano 10 4403 DOI: 10.1021/acsnano.6b00034
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[12] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
No Suggested Reading articles found!