CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators |
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Two types of enhancement-mode (E-mode) AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with different gate insulators are fabricated on Si substrates. The HfO2 gate insulator and the Al2O3 gate insulator each with a thickness of 30 nm are grown by the plasma-enhanced atomic layer deposition (PEALD). The energy band diagrams of two types of dielectric MIS-HEMTs are compared. The breakdown voltage (VBR) of HfO2 dielectric layer and Al2O3 dielectric layer are 9.4 V and 15.9 V, respectively. With the same barrier thickness, the transconductance of MIS-HEMT with HfO2 is larger. The threshold voltage (Vth) of the HfO2 and Al2O3 MIS-HEMT are 2.0 V and 2.4 V, respectively, when the barrier layer thickness is 0 nm. The C-V characteristics are in good agreement with the Vth's transfer characteristics. As the barrier layer becomes thinner, the drain current density decreases sharply. Due to the dielectric/AlGaN interface is very close to the channel, the scattering of interface states will lead the electron mobility to decrease. The current collapse and the Ron of Al2O3 MIS-HEMT are smaller at the maximum gate voltage. As Al2O3 has excellent thermal stability and chemical stability, the interface state density of Al2O3/AlGaN is less than that of HfO2/AlGaN.
|
Received: 18 March 2020
Revised: 24 April 2020
Published: 05 August 2020
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974111, 11690042, and 61974115), the National Pre-research Foundation of China (Grant No. 31512050402), and the Fund of Innovation Center of Radiation Application, China (Grant No. KFZC2018040202). |
Corresponding Authors:
Chong Wang, Chong Wang
E-mail: chongw@xidian.edu.cn;xfzheng@mail.xidian.edu.cn
|
Cite this article:
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃) Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators 2020 Chin. Phys. B 29 087304
|
[1] |
Hua M Y, Wei J, Krishnamoorthy S, Bao Q L, Zhang Z F, Zheng Z Y and Chen Kevin J 2018 IEEE T. Electron. Dev. 39 413
|
[2] |
Nifa I, Leroux C, Torres A, Charles M, Reimbold G, Ghibaudo G and Bano E 2019 Microelectron. Eng. 215 110976
|
[3] |
Fei X X, Wang Y, Luo X, Cao F and Yu C H 2018 Superlattice Microst. 114 314
|
[4] |
Garcia F, Shamsir S and Islam S K 2019 Solid-State Electron. 151 52
|
[5] |
Shi Y J, Huang S, Bao Q L, Wang X H, Wei K, Jiang H J, Li J F, Zhao C, Li S M, Zhou Y, Gao H W, Sun Q, Yang H, Zhang J H, Chen W J, Zhou Q, Zhang B and Liu X Y 2016 IEEE T. Electron. Dev. 63 614
|
[6] |
Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
|
[7] |
Liu S, Cai Y, Gu G, Wang J, Zeng C, Shi W, Feng Z, Qin H, Cheng Z, Chen K J and Zhang B 2012 IEEE Electron Dev. Lett. 33 354
|
[8] |
He J B, Hua M Y, Zhang Z F and Chen J K 2018 IEEE T. Electron. Dev. 65 3185
|
[9] |
Hashizume T, Nishiguchi K, Kaneki S, Kuzmik J and Yatabe Z 2018 Mater. Sci. Semicond. Proc. 78 85
|
[10] |
Long R D, Jackson C M, Yang J, Hazeghi A, Hitzman C, Majety S, Arehart A R, Nishi Y, Ma T P, Ringel S A and Mclntyre P C 2013 Appl. Phys. Lett. 103 201607
|
[11] |
Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
|
[12] |
Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEE Electron Dev. Lett. 31 189
|
[13] |
Huang S, Yang S, Roberts J and Chen K J 2011 Jpn. J. Appl. Phys. 50 110202
|
[14] |
Choi W, Seok O, Ryu H, Cha H and Seo K 2014 IEEE Electron Dev. Lett. 35 175
|
[15] |
Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Phys. Status Solidi A 217 1900981
|
[16] |
Tapajna M and Kuzmik J 2012 Appl. Phys. Lett. 100 113509
|
[17] |
Chou B Y, Hsu W C, Liu H Y, Ho C S and Lee C S 2013 Semicond. Sci. Technol. 28 074005
|
[18] |
Yoon Y J, Kang H S, Seo J H, Kim Y J, Bae J H, Lee J H, Kang I M and Cho S J 2014 J. Korean Phys. Soc. 65 1579
|
[19] |
Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Solid-State Electron. 163 107649
|
[20] |
Zhu J J, Ma X H, Xie Y, Hou B Chen W W, Zhang J C and Hao Y 2015 IEEE T. Electron. Dev. 62 512
|
[21] |
He Y L, Gao H, Wang C, Zhao Y P, Lu X L, Zhang C F, Zheng X F, Guo L X, Ma X H and Hao Y 2019 Phys. Status Solidi A 216 1900115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|