Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087304    DOI: 10.1088/1674-1056/ab8daa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators

Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Two types of enhancement-mode (E-mode) AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with different gate insulators are fabricated on Si substrates. The HfO2 gate insulator and the Al2O3 gate insulator each with a thickness of 30 nm are grown by the plasma-enhanced atomic layer deposition (PEALD). The energy band diagrams of two types of dielectric MIS-HEMTs are compared. The breakdown voltage (VBR) of HfO2 dielectric layer and Al2O3 dielectric layer are 9.4 V and 15.9 V, respectively. With the same barrier thickness, the transconductance of MIS-HEMT with HfO2 is larger. The threshold voltage (Vth) of the HfO2 and Al2O3 MIS-HEMT are 2.0 V and 2.4 V, respectively, when the barrier layer thickness is 0 nm. The C-V characteristics are in good agreement with the Vth's transfer characteristics. As the barrier layer becomes thinner, the drain current density decreases sharply. Due to the dielectric/AlGaN interface is very close to the channel, the scattering of interface states will lead the electron mobility to decrease. The current collapse and the Ron of Al2O3 MIS-HEMT are smaller at the maximum gate voltage. As Al2O3 has excellent thermal stability and chemical stability, the interface state density of Al2O3/AlGaN is less than that of HfO2/AlGaN.
Keywords:  AlGaN/GaN      enhancement-mode      MIS-HEMT      HfO2      Al2O3  
Received:  18 March 2020      Revised:  24 April 2020      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Rw (Metal-insulator-metal structures)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974111, 11690042, and 61974115), the National Pre-research Foundation of China (Grant No. 31512050402), and the Fund of Innovation Center of Radiation Application, China (Grant No. KFZC2018040202).
Corresponding Authors:  Chong Wang, Chong Wang     E-mail:  chongw@xidian.edu.cn;xfzheng@mail.xidian.edu.cn

Cite this article: 

Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃) Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators 2020 Chin. Phys. B 29 087304

[1] Hua M Y, Wei J, Krishnamoorthy S, Bao Q L, Zhang Z F, Zheng Z Y and Chen Kevin J 2018 IEEE T. Electron. Dev. 39 413
[2] Nifa I, Leroux C, Torres A, Charles M, Reimbold G, Ghibaudo G and Bano E 2019 Microelectron. Eng. 215 110976
[3] Fei X X, Wang Y, Luo X, Cao F and Yu C H 2018 Superlattice Microst. 114 314
[4] Garcia F, Shamsir S and Islam S K 2019 Solid-State Electron. 151 52
[5] Shi Y J, Huang S, Bao Q L, Wang X H, Wei K, Jiang H J, Li J F, Zhao C, Li S M, Zhou Y, Gao H W, Sun Q, Yang H, Zhang J H, Chen W J, Zhou Q, Zhang B and Liu X Y 2016 IEEE T. Electron. Dev. 63 614
[6] Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
[7] Liu S, Cai Y, Gu G, Wang J, Zeng C, Shi W, Feng Z, Qin H, Cheng Z, Chen K J and Zhang B 2012 IEEE Electron Dev. Lett. 33 354
[8] He J B, Hua M Y, Zhang Z F and Chen J K 2018 IEEE T. Electron. Dev. 65 3185
[9] Hashizume T, Nishiguchi K, Kaneki S, Kuzmik J and Yatabe Z 2018 Mater. Sci. Semicond. Proc. 78 85
[10] Long R D, Jackson C M, Yang J, Hazeghi A, Hitzman C, Majety S, Arehart A R, Nishi Y, Ma T P, Ringel S A and Mclntyre P C 2013 Appl. Phys. Lett. 103 201607
[11] Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
[12] Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEE Electron Dev. Lett. 31 189
[13] Huang S, Yang S, Roberts J and Chen K J 2011 Jpn. J. Appl. Phys. 50 110202
[14] Choi W, Seok O, Ryu H, Cha H and Seo K 2014 IEEE Electron Dev. Lett. 35 175
[15] Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Phys. Status Solidi A 217 1900981
[16] Tapajna M and Kuzmik J 2012 Appl. Phys. Lett. 100 113509
[17] Chou B Y, Hsu W C, Liu H Y, Ho C S and Lee C S 2013 Semicond. Sci. Technol. 28 074005
[18] Yoon Y J, Kang H S, Seo J H, Kim Y J, Bae J H, Lee J H, Kang I M and Cho S J 2014 J. Korean Phys. Soc. 65 1579
[19] Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Solid-State Electron. 163 107649
[20] Zhu J J, Ma X H, Xie Y, Hou B Chen W W, Zhang J C and Hao Y 2015 IEEE T. Electron. Dev. 62 512
[21] He Y L, Gao H, Wang C, Zhao Y P, Lu X L, Zhang C F, Zheng X F, Guo L X, Ma X H and Hao Y 2019 Phys. Status Solidi A 216 1900115
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[9] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[10] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[11] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[12] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[13] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[14] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!