CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures |
Sheng Hu(胡晟)1, Ling Yang(杨凌)1, Min-Han Mi(宓珉瀚)2, Bin Hou(侯斌)2, Sheng Liu(刘晟)3, Meng Zhang(张濛)1, Mei Wu(武玫)2, Qing Zhu(朱青)1, Sheng Wu(武盛)2, Yang Lu(卢阳)2, Jie-Jie Zhu(祝杰杰)1, Xiao-Wei Zhou(周小伟)1, Ling Lv(吕玲)1, Xiao-Hua Ma(马晓华)2, Yue Hao(郝跃)2 |
1 State Key Discipline Laboratory of Wide Band-gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 2 School of Microelectronics, Xidian University, Xi'an 710071, China; 3 Shanghai Precision Metrology and Testing Research Institute, Shanghai 201109, China |
|
|
Abstract The graded AlGaN:Si back barrier can form the majority of three-dimensional electron gases (3DEGs) at the GaN/graded AlGaN:Si heterostructure and create a composite two-dimensional (2D)-three-dimensional (3D) channel in AlGaN/GaN/graded-AlGaN:Si/GaN:C heterostructure (DH:Si/C). Frequency-dependent capacitances and conductance are measured to investigate the characteristics of the multi-temperature trap states of in DH:Si/C and AlGaN/GaN/GaN:C heterostructure (SH:C). There are fast, medium, and slow trap states in DH:Si/C, while only medium trap states exist in SH:C. The time constant/trap density for medium trap state in SH:C heterostructure are (11 μs-17.7 μs)/(1.1×1013 cm-2·eV-1-3.9×1013 cm-2·eV-1) and (8.7 μs-14.1 μs)/(0.7×1013 cm-2·eV-1-1.9×1013 cm-2·eV-1) at 300 K and 500 K respectively. The time constant/trap density for fast, medium, and slow trap states in DH:Si/C heterostructure are (4.2 μs-7.7 μs)/(1.5×1013 cm-2·eV-1-3.2×1013 cm-2·eV-1), (6.8 μs-11.8 μs)/(0.8×1013 cm-2·eV-1-2.8×1013 cm-2·eV-1), (30.1 μs-151 μs)/(7.5×1012 cm-2·eV-1-7.8×1012 cm-2·eV-1) at 300 K and (3.5 μs-6.5 μs)/(0.9×1013 cm-2·eV-1-1.8×1013 cm-2·eV-1), (4.9 μs-9.4 μs)/(0.6×1013 cm-2·eV-1-1.7×1013 cm-2·eV-1), (20.6 μs-61.9 μs)/(3.2×1012 cm-2·eV-1-3.5×1012 cm-2·eV-1) at 500 K, respectively. The DH:Si/C structure can effectively reduce the density of medium trap states compared with SH:C structure.
|
Received: 13 March 2020
Revised: 21 May 2020
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1802100), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2020JM-191 and 2018HJCG-20), the National Natural Science Foundation of China (Grant Nos. 61904135, 61704124, and 61534007), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and 2019M663930XB), and the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation, China (Grant No. XWYCXY-012019007). |
Corresponding Authors:
Ling Yang
E-mail: yangling@xidian.edu.cn
|
Cite this article:
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃) Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures 2020 Chin. Phys. B 29 087305
|
[1] |
Kuzuhara M and Tokuda H 2015 IEEE Trans. Electron. Dev. 62 405
|
[2] |
Ikeda N, Niyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151
|
[3] |
Uren M J, Möreke J and Kuball M 2012 Electron. Dev. 59 3327
|
[4] |
Chevtchenko S A, Cho E, Brunner F and Bahat T 2012 Appl. Phys. Lett. 100 223502
|
[5] |
Ikeda N, Jiang L and Yoshida S 2004 Proc. 16th ISPSD, May 24-27, 2004, Kitakyushu, Japan, p. 369
|
[6] |
Choi Y C, Pophristic M, Peres B, Spencer M G and Eastman L F 2006 J. Vac. Sci. Technol. B:Microelectron Process Phenom. 24 2601
|
[7] |
Perez-Tomas A, Fontsere A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C and Cordier Y 2013 J. Appl. Phys. 113 174501
|
[8] |
Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and Dejaeger J C 2006 IEEE Trans. Electron. Dev. 53 395
|
[9] |
Chen Z, Pei Y, Chu R, Newman S, Brown D, Chung R, Keller S, DenBaars S P, Nakamura S and Mishra U K 2010 Phys. Status Solidi C 7 2404
|
[10] |
Niiyama Y, Kato S, Sato Y, Iwami M, Li J, Takehara H, Kambayashi H, Ikeda N and Yoshida S 2007 Proc. Mater. Res. Soc. Symp. 955 0955-I16-06
|
[11] |
Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J and Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757
|
[12] |
Wurfl J, Hilt O, Bahat-Treidel E, Zhytnytska R, Kotara P, Brunner F, Krueger O, Weyers M 2013 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 9-11, 2013, Washington, USA, p. 6.1.1
|
[13] |
Selvaraj J, Lawrence Selvaraj S and Egawa T 2009 Jpn. J. Appl. Phys. 48 121002
|
[14] |
Cho E, Brunner F, Zhytnytska R, Kotara P, Wurfl J and Weyers M 2011 Appl. Phys. Lett. 99 103505
|
[15] |
Gao K H, Ma X R, Zhou D B, Li S, Li Z Q, Lin T, Zhang X H and Zhou W Z 2019 Superlattices Microstruct. 135 106262
|
[16] |
Bergsten J, Thorsell M, Adolph D, Chen J T, Kordina O, Sveinbjornsson E and Rorsman N 2018 IEEE Trans. Electron. Dev. 65 2446
|
[17] |
Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl. Phys. Lett. 79 1634
|
[18] |
Chu R M, Zhou Y G, Chen K J and Lau K M 2003 Phys. Status Solidi C 7 2400
|
[19] |
Zhang W H, Xue J S, Zhang L, Zhang T, Lin Z Y and Zhang J C 2017 Appl. Phys. Lett. 110 252102
|
[20] |
See http:www.ioffe.rssi.ru/SVA/NSM/for an archive of physical properties of GaN
|
[21] |
Lang D V, Grimmeiss H G, Meijer E and Jaros M 1980 Phys. Rev. B 22 3917
|
[22] |
Look D C, Fang Z Q and Claflin B 2005 J. Cryst. Growth 281 143
|
[23] |
Park Y S, Park C J, Park C M, Na J H, Oh J S, Yoon I T, Cho H Y, Kang T W and Oh J E 2005 Appl. Phys. Lett. 86 152109
|
[24] |
Soh C B, Chua S J, Lim H F, Chi D Z, Liu W and Tripathy S 2004 J. Phys.:Condens. Matter 16 6305
|
[25] |
Chung H M, Chuang W C, Pan Y C, Tsai C C, Lee M C, Chen W H, Chen W K, Chiang C I, Lin C H and Chang H 2000 Appl. Phys. Lett. 76 879
|
[26] |
Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38
|
[27] |
Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1485
|
[28] |
Honda U, Yamada Y, Tokuda Y and Shiojima K 2012 Jpn. J. Appl. Phys. 51 04DF04
|
[29] |
Chen S, Honda U, Shibata T, Matsumura T, Tokuda Y, Ishikawa K, Hori M, Ueda H, Uesugi T and Kachi T 2012 J. Appl. Phys. 112 053513
|
[30] |
Kindl D, Hubik P, Kristofik J, Mares J J, Vyborny Z, Leys M R and Boeykens S 2009 J. Appl. Phys. 105 093706
|
[31] |
Umana G A, Parish G, Fichtenbaum N, Keller S, Mishra U K and Nener B D 2008 J. Electron. Mater. 37 569
|
[32] |
Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|