Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066402    DOI: 10.1088/1674-1056/28/6/066402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires

Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  

High pressure structural phase transition of monoclinic paraotwayite type α-Ni(OH)2 nanowires with a diameter of 15 nm-20 nm and a length of several micrometers were studied by synchrotron x-ray diffraction (XRD) and Raman spectra. It is found that the α-Ni(OH)2 nanowires experience an isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure at 6.3 GPa-9.3 GPa. We suggest that the isostructural phase transition can be attributed to the amorphization of the H-sublattice. The bulk moduli for the low pressure phase and the high pressure phase are 41.2 (4.2) GPa and 94.4 (5.6) GPa, respectively. Both the pressure-induced isostructural phase transition and the amorphization of the H-sublattice in the α-Ni(OH)2 nanowires are reversible upon decompression. Our results show that the foreign anions intercalated between the α-Ni(OH)2 layers play important roles in their structural phase transition.

Keywords:  nickel hydroxide      high pressure      synchrotron radiation      isostructural phase transition  
Received:  30 January 2019      Revised:  12 March 2019      Published:  05 June 2019
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  91.60.Gf (High-pressure behavior)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  61.05.cp (X-ray diffraction)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 11874172, 11374120, 11634004, and 51320105007), and the Fund from Jilin University for Science and Technology Innovative Research Team (Grant No. 2017TD-01).

Corresponding Authors:  Quan-Jun Li, Zhen Yao     E-mail:  liquanjun@jlu.edu.cn;yaozhenjlu@163.com

Cite this article: 

Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰) Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires 2019 Chin. Phys. B 28 066402

[1] Hauel A P 1939 Trans. Electrochem. Soc. 76 435
[2] Ran J G, Yu J G and Jaroniec M 2011 Green Chem. 13 2708
[3] Gao M R, Sheng W C, Zhuang Z B, Fang Q R, Gu S, Jiang J and Yan Y S 2014 J. Am. Chem. Soc. 136 7077
[4] Aghazadeh M, Ghaemi M, Sabour B and Dalvand S 2014 J. Solid State Electrochem. 18 1569
[5] Chen J C, Hsu C T and Hu C C 2014 J. Power Sources 253 205
[6] Mortimer R J, Sialvi M Z, Varley T S and Wilcox G D 2014 J. Solid State Electrochem. 18 3359
[7] Cordoba-Torresi S I, Gabrielli C, Goff A H L and Torresi R 1991 J. Electrochem. Soc. 138 1548
[8] Fan Y, Yang Z J, Cao X H, Liu P F, Chen S and Cao Z 2014 J. Electrochem. Soc. 161 B201
[9] Miao Y Q, Ouyang L, Zhou S L, Xu L N, Yang Z Y, Xiao M S and Ouyang R Z 2014 Biosens. Bioelectron. 53 428
[10] Bode H, Dehmelt K and Witte J 1966 Electrochim. Acta 11 1079
[11] McEwen R S 1971 J. Phys. Chem. 75 1782
[12] Yang D N, Wang R M, He M H, Zhang J and Liu Z F 2005 J. Phys. Chem. B 109 7654
[13] Williams Q and Hemley R J 2001 Ann. Rev. Earth Planet. Sci. 29 365
[14] Zhang Z, Cui H, Yang D P, Zhang J, Tang S X, Wu S and Cui Q L 2017 Chin. Phys. B 26 106402
[15] Gao Y P, Dong W Q, Li G and Liu R P 2018 Chin. Phys. Lett. 35 036103
[16] Petch H E and Megaw H D 1954 J. Opt. Soc. Am. 44 744
[17] Kruger M B, Williams Q and Jeanloz R 1989 J. Chem. Phys. 91 5910
[18] Meade C and Jeanloz R 1990 Geophys. Res. Lett. 17 1157
[19] Duffy T S, Meade C, Fei Y W, Mao H K and Hemley R J 1995 Am. Mineral. 80 222
[20] Nguyen J H, Kruger M B and Jeanloz R 1997 Phys. Rev. Lett. 78 1936
[21] Parise J B, Loveday J S, Nelmes R J and Kagi H 1999 Phys. Rev. Lett. 83 328
[22] Murli C, Sharma S M, Kulshreshtha S K and Sikka S K 2001 Physica B 307 111
[23] Dong L H, Chu Y and Sun W D 2008 Chem. Eur. J. 14 5064
[24] Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J and Yang Z R 2018 Chin. Phys. B 27 066201
[25] Garg N, Karmakar S, Sharma S M, Busseto E and Sikka S K 2004 Physica B 349 245
[26] Efthimiopoulos I, Kemichick J, Zhou X, Khare S V, Ikuta D and Wang Y 2014 J. Phys. Chem. A 118 1713
[27] Manjón F J, Vilaplana R, Gomis O, Pérez-González E, SantamaríaP érez D, Marín-Borrás V, Segura A, González J, Rodríguez-Hernández P, Muñoz A, Drasar C, Kucek V and Muñoz-Sanjosé V 2013 Phys. Status Solidi B 250 669
[28] Pereira A L J, Sans J A, Vilaplana R, Gomis O, Manjón F J, Rodríguez-Hernández P, Muñoz A, Popescu C and Beltrán A 2014 J. Phys. Chem. C 118 23189
[29] Hall D S, Lockwood D J, Poirier S, Bock C and MacDougall B R 2012 J. Phys. Chem. A 116 6771
[30] Cornilsen B C, Karjala P J and Loyselle P L 1988 J. Power Sources 22 351
[31] Nguyen J H, Kruger M B and Jeanloz R 1994 Phys. Rev. B 49 3734
[32] Speziale S, Jeanloz R, Milner A, Pasternak M P and Zaug J M 2005 Phys. Rev. B 71 184106
[33] Nagai T, Hattori T and Yamanaka T 2000 Am. Mineral. 85 760
[34] Parise J B, Leinenweber K, Weidner D J, Tan K and Dreele R B V 1994 Am. Mineral. 79 193
[35] Parise J B, Theroux B, Li R, Loveday J S, Marshall W G and Klotz S 1998 Phys. Chem. Miner. 25 130
[36] Nagai T, Ito T, Hattori T and Yamanaka T 2000 Phys. Chem. Miner 27 462
[37] Shim S H, Rekhi S, Martin M C and Jeanlo R 2006 Phys. Rev. B 74 024107
[38] Wang W D, He D W, Xiao W S, Wang S M and Xu J A 2013 Chin. Phys. Lett. 30 117201
[39] Liu Q Q, Wang F R, Li F Y, Chen L C, Yu R C, Jin C Q, Li Y C and Liu J 2008 Chin. Phys. Lett. 25 2239
[40] Fei Y W and Mao H K 1993 J. Geophys. Res. 98 11875
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[9] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影), Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[13] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[14] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[15] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
No Suggested Reading articles found!