Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083101    DOI: 10.1088/1674-1056/27/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride

Dong-lan Wu(伍冬兰)1,2, Cheng-quan Lin(林成泉)1, Yu-feng Wen(温玉锋)1, An-dong Xie(谢安东)1, Bing Yan(闫冰)2
1 College of Mathematical and Physical Sciences, Jinggangshan University, Ji'an 343009, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The potential energy curves (PECs) of 14 Λ-S states for magnesium chloride (MgCl) have been calculated by using multi-reference configuration interaction method with Davidson correction (MRCI+Q). The core-valence correlation (CV), scalar relativistic effect, and spin-orbit coupling (SOC) effect are considered in the electronic structure computations. The spectroscopic constants of X2Σ+ and A2Π states have been obtained, which are in good agreement with the existing theoretical and experimental results. Furthermore, other higher electronic states are also characterized. The permanent dipole moments (PDMs) of Λ-S states and the spinorbit (SO) matrix elements between Λ-S states are also computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the avoided crossing between the states with the same symmetry. The SOC effect is taken into account with Breit-Pauli operator, which makes the 14 Λ-S states split into 30 Ω states, and leads to a double-well potential of the Ω=(3)1/2 state. The energy splitting for the A2Π is calculated to be 53.61 cm-1 and in good agreement with the experimental result 54.47 cm-1. The transition dipole moments (TDMs), Franck-Condon factors (FCFs), and the corresponding radiative lifetimes of the selected transitions from excited Ω states to the ground state X2Σ+1/2 have been reported. The computed radiative lifetimes τν' of low-lying excites Ω states are all on the order of 10 ns. Finally, the feasibility of laser cooling of MgCl molecule has been analyzed.
Keywords:  MgCl      MRCI+Q      spectroscopic and transition properties      spin-orbit coupling  
Received:  09 April 2018      Revised:  24 May 2018      Published:  05 August 2018
PACS:  31.15.A- (Ab initio calculations)  
  31.15.vn (Electron correlation calculations for diatomic molecules)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grand Nos. 11564019, 11147158, 11264020, and 11574114) and Jiangxi Provincial Education Department Project, China (Grand No. GJJ170654).
Corresponding Authors:  Bing Yan     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰) Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride 2018 Chin. Phys. B 27 083101

[1] Barber B E, Zhang K Q, Guo B and Bernath P F 1995 J. Mol. Spectrosc. 169 583
[2] Buckingham A D and Olegagio R M 1993 Chem. Phys. Lett. 212 253
[3] Baucchlicher C W, Langhoff S R, Steimle T C and Shirley J E 1990 J. Chem. Phys. 93 4179
[4] Walters O H and Barratt S 1928 Proc. R. Soc. London Ser. A 118 120
[5] Morgan F 1936 Phys. Rev. 50 603
[6] Sadygov R G, Rostas J, Taieb G and Yarkony D 1997 J. Chem. Phys. 106 4091
[7] Törring T, Ernst W E and Kindt S 1989 J. Chem. Phys. 90 4927
[8] Törring T, Ernst W E and Kändler J 1984 J. Chem. Phys. 81 4614
[9] Rice S F, Martin H and Field R W 1985 J. Chem. Phys. 82 5023
[10] Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G and Wang F H 2015 J. Chem. Phys. 143 024302
[11] Wan M J, Huang D H, Shao J X, Yu Y, Li S and Li Y Y 2015 J. Chem. Phys. 143 164312
[12] Singh M, Ghodgaokar G S and Saksena M D 1987 Can. J. Phys. 65 1594
[13] Hirao T, Bernath P F, Fellows C E, Gutterres R F and Vervloet M 2002 J. Mol. Spectrosc. 212 53
[14] Ohshima Y and Endo Y 1993 Chem. Phys. Lett. 213 95
[15] Rao V S N and Rao P T 1963 Indian J. Phys. 37 640
[16] Darji A B, Shah N R, Shah P M, Sureshkumar M B and Desai G S 1985 Pramana 25 571
[17] Singh M, Saksena M D and Ghodgaokar G S 1988 Can. J. Phys. 66 570
[18] Parl, G, Rostas J, Taieb G and Yarkony D R 1990 J. Chem. Phys. 93 6403
[19] Bogey M, Demuynck C and Destombes J L 1989 Chem. Phys. Lett. 155 265
[20] Wu D L, Tan B, Qin J Y, Wan H J, Xie A D, Yan B and Ding D J 2015 Spectrochim. Acta Part. A 150 499
[21] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, O Deegan M J, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, LloydA W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2012 MOLPRO, Version 2012.1, a package of ab initio programs
[22] Werner H J , Knowles P J, Knizia G, Manby F R and Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[23] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[24] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[26] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[27] Li R, Wei C L, Sun Q X, Sun E P, Xu H F and Yan B 2013 J. Phys. Chem. A 117 2373
[28] Li R, Zhang X M, Jin M X, Yan B and Xu H F 2014 Chem. Phys. Lett. 594 6
[29] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[30] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358
[31] Wilson A K, Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667
[32] Berning A, Schweizer M, Werner H J , Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[33] Le Roy R J 2007 LEVEL m 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels , University of Waterloo Chemical Physics Research Report CP-663, University of Waterloo, Ontario
[34] Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D and Yan B 2016 Spectrochim. Acta Part. A 161 101
[35] Drakes J A 1995 J. Quantum Spectrosc. Radiat. Transfer 54 1039
[36] Rostas J, Shafizadeh N, Taieb G, Bourguignon B and Prisant M G 1990 Chem. Phys. 142 97
[37] Kang S Y, Gao Y F, Kuang F G, Gao T, Du J G and Jiang G 2015 Phys. Rev. A 91 042511
[38] Zhao S T, Yan B, Li R, Wu S and Wang Q L 2017 Chin. Phys. B 26 023105
[39] Wan M J, Jin C G, Yu Y, Huang D H and Shao J X 2017 Chin. Phys. B 26 033101
[40] Wei C L, Zhang X M, Ding D J and Yan B 2016 Chin. Phys. B 25 013102
[41] Moore C E 1971 Atomic Energy Levels, National Bureau of Standards, Washington, DC
[42] Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)
[43] Zou W L and Liu W J 2005 J. Comput. Chem. 26 106
[1] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[4] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[5] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[6] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[9] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[10] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[11] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[12] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[13] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[14] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[15] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
No Suggested Reading articles found!