Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078801    DOI: 10.1088/1674-1056/27/7/078801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dependence of the solar cell performance on nanocarbon/Si heterojunctions

Shiqi Xiao(肖仕奇)1,3, Qingxia Fan(范庆霞)1,3, Xiaogang Xia(夏晓刚)1,3, Zhuojian Xiao(肖卓建)1,3, Huiliang Chen(陈辉亮)1,3, Wei Xi(席薇)1,3, Penghui Chen(陈鹏辉)1,3, Junjie Li(李俊杰)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube (CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals (G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.

Keywords:  carbon nanotube      graphene      heterojunction      silicon solar cell  
Received:  17 April 2018      Published:  05 July 2018
PACS:  88.30.rh (Carbon nanotubes)  
  81.05.ue (Graphene)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  88.40.jj (Silicon solar cells)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0208402), the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, and 51372269), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040202).

Corresponding Authors:  Weiya Zhou     E-mail:  wyzhou@iphy.ac.cn

Cite this article: 

Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Dependence of the solar cell performance on nanocarbon/Si heterojunctions 2018 Chin. Phys. B 27 078801

[1] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
[2] Wang Y, Tong S W, Xu X F, Ozyilmaz B and Loh K P 2011 Adv. Mater. 23 1514
[3] Park H, Brown P R, Bulovic V and Kong J 2012 Nano Lett. 12 133
[4] Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
[5] Jang H, Park Y J, Chen X, Das T, Kim M S and Ahn J H 2016 Adv. Mater. 28 4184
[6] Sun D M, Liu C, Ren W C and Cheng H M 2016 Adv. Electron. Mater. 2 1600229
[7] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X and Wu D 2010 Adv. Mater. 22 2743
[8] Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y and Cao A 2013 Nano Lett. 13 1776
[9] Li X, Lv Z and Zhu H 2015 Adv. Mater. 27 6549
[10] Li X, Xie D, Park H, Zeng T H, Wang K, Wei J, Zhong M, Wu D, Kong J and Zhu H 2013 Adv. Energy Mater. 3 1029
[11] Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
[12] Kozawa D, Hiraoka K, Miyauchi Y, Mouri S and Matsuda K 2012 Appl. Phys. Express 5 042304
[13] Kang J, Shin D, Bae S and Hong B H 2012 Nanoscale 4 5527
[14] Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H and Kong J 2015 Nano Lett. 15 2104
[15] Ho P H, Liou Y T, Chuang C H, Lin S W, Tseng C Y, Wang D Y, Chen C C, Hung W Y, Wen C Y and Chen C W 2015 Adv. Mater. 27 1724
[16] Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H and Cao A 2015 ACS Appl. Mater. Inter 7 17088
[17] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
[18] Cummings A W, Duong D L, Nguyen V L, Van Tuan D, Kotakoski J, Barrios Vargas J E, Lee Y H and Roche S 2014 Adv. Mater. 26 5079
[19] Li X, Xie D, Park H, Zhu M, Zeng T H, Wang K, Wei J, Wu D, Kong J and Zhu H 2013 Nanoscale 5 1945
[20] Lin X, Liu P, Wei Y, Li Q, Wang J, Wu Y, Feng C, Zhang L, Fan S and Jiang K 2013 Nat. Commun. 4 2920
[21] Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji A R O, Samuel E L G, Hauge R H, Yacaman M J and Tour J M 2014 ACS Nano 8 5061
[22] Kim S H, Song W, Jung M W, Kang M A, Kim K, Chang S J, Lee S S, Lim J, Hwang J, Myung S and An K S 2014 Adv. Mater. 26 4247
[23] Kholmanov I N, Magnuson C W, Piner R, Kim J Y, Aliev A E, Tan C, Kim T Y, Zakhidov A A, Sberveglieri G, Baughman R H and Ruoff R S 2015 Adv. Mater. 27 3053
[24] Wang R, Hong T and Xu Y Q 2015 ACS Appl. Mater. Inter 7 5233
[25] Pulfrey D L 1978 IEEE Trans. Electron. Devices 25 1308
[26] Jung Y, Li X, Rajan N K, Taylor A D and Reed M A 2013 Nano Lett. 13 95
[27] Cui K, Anisimov A S, Chiba T, Fujii S, Kataura H, Nasibulin A G, Chiashi S, Kauppinen E I and Maruyama S 2014 J. Mater. Chem. A 2 11311
[28] He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, Sheng J, Ye J, Amine J C and Cui Y 2017 Adv. Mater. 29
[29] Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W and Xie S 2017 Nano Energy 33 436
[30] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[31] Fan Q, Zhang Q, Zhou W, Yang F, Zhang N, Xiao S, Gu X, Xiao Z, Chen H, Wang Y, Liu H and Zhou W 2017 Chin. Phys. B 26 028801
[32] Shi E, Li H, Yang L, Hou J, Li Y, Li L, Cao A and Fang Y 2015 Adv. Mater. 27 682
[33] Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
[34] Griep M H, Sandoz-Rosado E, Tumlin T M and Wetzel E 2016 Nano Lett. 16 1657
[35] Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A and Xu Y 2011 Appl. Phys. Lett. 98 133115
[36] Shi E, Li H, Xu W, Wu S, Wei J, Fang Y and Cao A 2015 Nano Energy 17 216
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[3] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[4] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[5] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[8] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[12] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[13] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[14] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[15] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
No Suggested Reading articles found!