Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127801    DOI: 10.1088/1674-1056/27/12/127801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial

Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

The effect of a sandwiched cross-shaped metamaterial absorber (CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber (PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current, electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.

Keywords:  polyurethane foam absorber      metamaterial      broadband microwave      absorption mechanism     
Received:  09 July 2018      Published:  05 December 2018
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Ja (Polarization)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 51802352), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2018zzts355).

Corresponding Authors:  Lian-Wen Deng     E-mail:  denglw@csu.edu.cn

Cite this article: 

Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥) Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial 2018 Chin. Phys. B 27 127801

[1] Li Y Q, Zhang H, Fu Y Q and Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473
[2] Wang F, Jiang W, Hong T, Xue H, Gong S and Zhang Y 2014 IET Microw. Anten. Propag. 8 491
[3] Wu K H, Cheng K F, Wang J C and Chang Y C 2017 Mater. Express 7 500
[4] He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H and Huang S X 2017 J. Magn. Magn. Mater. 444 49
[5] Deng L W, Ding L, Zhou K S, Huang S X, Hu Z W and Yang B C 2011 J. Magn. Magn. Mater. 323 1895
[6] Perez D, Gil I, Gago J, Fernandez-Garcia R, Balcells J, Gonzalez D, Berbel N and Mon J 2012 IEEE Trans. Compon. Pack. Manuf. Technol. 2 240
[7] Nesimoglu T and Sabah C 2017 IEEE Trans. Circuits Syst. Ⅱ-Express Briefs 63 89
[8] Cheng Y Z, Gong R Z, Nie Y and Wang X 2012 Chin. Phys. B 21 127801
[9] Wen B, Zhao J J, Duan Y P, Zhang X G, Zhao Y B, Dong C, Liu S H and Li T J 2006 J. Phys. D: Appl. Phys. 39 1960
[10] Liu X G, Or S W, Ho S L, Cheung C C, Leung C M, Han Z, Geng D Y and Zhang Z D 2012 J. Alloys Compd. 531 9071
[11] Ohlan A, Singh K, Chandra A and Dhawan S K 2008 Appl. Phys. Lett. 93 205
[12] Zhu Z T, Sun X, Li G X, Xue H R, Guo H, Fan X L, Pan X C and He J P 2015 J. Magn. Magn. Mater. 377 95
[13] Singh P, Babbar V K, Razdan A, Puri R K and Goel T C 2000 J. Appl. Phys. 87 4362
[14] Sudeep P M, Vinayasree S, Mohanan P, Narayanan T N and Anantharaman M R 2015 Appl. Phys. Lett. 106 061301
[15] Abbas S M, Dixit A K, Chatterjee R and Goel T C 2007 J. Magn. Magn. Mater. 309 20
[16] Cao C M, Dong C H, Yao J L and Jiang C J 2018 Chin. Phys. B 27 017503
[17] Zhao B, Han Q and Zhu Y 2013 Express Polym. Lett. 7 212
[18] Gupta K K, Abbas S M, Goswami T H and Abhyankar A C 2014 J. Magn. Magn. Mater. 362 216
[19] Smith D R, Pendry J B and Wiltshire M C 2004 Science 305 788
[20] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, A Genov D, Bartal G and Zhang X 2008 Nature 455 376
[21] Hao J M, Yan W and Qiu M 2010 Appl. Phys. Lett. 96 4184
[22] Chen H T, Zhou J F, O'Hara J F, Chen F, Azad A K and Taylor A J 2010 Phys. Rev. Lett. 105 073901
[23] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[24] Gu S, Barrett J P, H, T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[25] Ozbay E, Aydin K, Cubukcu E and Bayindir M 2003 IEEE Trans. Anten. Propag. 51 2592
[26] Agranovich V M, Shen Y R, Baughman R H and Zakhidov A A 2004 Phys. Rev. B 69 1124
[27] Hui Y C, Wang C Q and Huang X Z 2015 Acta Phys. Sin. 64 218102 (in Chinese)
[28] Cheng Y Z, Yang H L, Cheng Z Z and Wu N 2011 Appl. Phys. A: Mater. Sci. Process. 102 99
[29] Cheng Y Z, Yang H L, Cheng Z Z and Xiao B X 2011 Photon. Nanostruct. 9 8
[30] Ma W, Wen Y and Yu X 2013 Opt. Express 21 30724
[31] Li Z, Stan L, Czaplewski D A, Yang X and Gao J 2018 Opt. Express 26 5616
[32] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[33] Wu J S, Duan Y P and Xi Q 2017 J. Mater. Sci.: Mater. Electron. 28 3075
[34] Ma J N, Zhang X M, Liu W and Ji G B 2016 J. Mater. Chem. C 4 11419
[35] Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[36] Bu D D, Yue C S, Zhang G Q, Hu Y T and Dong S 2016 Chin. Phys. B 25 067802
[37] Xu Y S, Bie S W, Jiang J J, Xu H B, Wang D and Zhou J 2014 Acta Phys. Sin. 63 205202 (in Chinese)
[38] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[3] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[4] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[5] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[6] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[7] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷), Yidong Hou(侯宜栋). Chin. Phys. B, 2020, 29(10): 107303.
[8] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), Bi-Jun Xu(徐弼军). Chin. Phys. B, 2020, 29(10): 104101.
[9] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[10] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[11] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[12] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[13] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[14] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[15] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
No Suggested Reading articles found!