Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127702    DOI: 10.1088/1674-1056/27/12/127702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Epitaxially strained SnTiO3 at finite temperatures

Dawei Wang(王大威)1, Laijun Liu(刘来君)2, Jia Liu(刘佳)3, Nan Zhang(张楠)4, Xiaoyong Wei(魏晓勇)4
1 School of Microelectronics and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China;
3 State Key Laboratory for Mechanical Behavior of Materials & School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
4 Electronic Materials Research Laboratory-Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

By combining the effective Hamiltonian approach and direct ab initio computation, we obtain the phase diagram of SnTiO3 with respect to epitaxial strain and temperature. This demonstrates the complex features of the phase diagram and provides an insight into this system, which is a presumably simple perovskite. Two triple points, as shown in the phase diagram, may be exploited to achieve high-performance piezoelectric effects. Despite the inclusion of the degree of freedom related to oxygen octahedron tilting, the ferroelectric displacements dominate the structural phases over the whole misfit strain range. Finally, we show that SnTiO3 can change from hard to soft ferroelectrics with the epitaxial strain.

Keywords:  SnTiO3      phase diagram      epitaxial strain  
Received:  14 August 2018      Revised:  09 September 2018      Accepted manuscript online: 
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574246, 51390472, U1537210, and 11564010), the National Basic Research Program of China (Grant No. 2015CB654903), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant Nos. GA139008 and AA138162), and the “111” Project of China (Grant No. B14040).

Corresponding Authors:  Dawei Wang, Laijun Liu     E-mail:  dawei.wang@mail.xjtu.edu.edu;2009011@glut.edu.edu

Cite this article: 

Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇) Epitaxially strained SnTiO3 at finite temperatures 2018 Chin. Phys. B 27 127702

[1] Xu R J, Liu S, Grinberg I, Karthik J, Damodaran A R, Rappe A M and Martion L W 2015 Nat. Mater. 14 79
[2] Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (London: Academic)
[3] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Nature 432 84
[4] Liu W F and Ren X B 2009 Phys. Rev. Lett. 103 257602
[5] Jaffe B, Roth R S and Marzullo S 1954 J. Appl. Phys. 25 809
[6] Zeng Y, Bokov A A, Wang D, Xiang F and Hong W 2018 Ceram. Inter. 44 17548
[7] Wessels B W 2007 Ann. Rev. Mater. Res. 37 659
[8] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[9] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[10] Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H and Tokura Y 2004 Science 305 646
[11] Ohtomo A and Hwang H Y 2004 Nature 427 423
[12] Spaldin N A and Fiebig M 2005 Science 309 391
[13] Wang L, Ju S, You L, Qi Y J, Guo Y W, Ren P, Zhou Y and Wang J L 2015 Sci. Rep. 5 18707
[14] He F Z, Wells B O, Ban Z G, Alpay S P, Grenier S, Shapiro S M, Si W D, Clark A and Xi X X 2004 Phys. Rev. B. 70 235405
[15] Jiang Z J, Zhang R Z, Wang D W, Sichuga D, Jia C L and Bellaiche L 2014 Phys. Rev. B 89 214113
[16] Wu J, Xiao D and Zhu J 2015 Chem. Rev. 115 2559
[17] Armiento R, Kozinsky B, Fornari M and Ceder G 2011 Phys. Rev. B 84 014103
[18] Matar S, Baraille I and Subramanian M 2009 Chem. Phys. 355 43
[19] Lebedev A I 2009 Phys. Solid State 51 362
[20] Parker W D, Rondinelli J M and Nakhmanson S M 2011 Phys. Rev. B 84 245126
[21] Xie Y H, Yin S, Hashimoto T, Kimura H and Sato T 2009 J. Mater. Sci. 44 4834
[22] Ren P R, Liu Z C, Wang Q, Peng B L, Ke S M, Fan H Q and Zhao G Y 2017 Sci. Rep. 7 6693
[23] Bennett J W, Grinberg I, Davies P K and Rappe A M 2011 Phys. Rev. B 83 144112
[24] Suzuki S, Honda A, Iwaji N, Higai S, Ando A, Takagi H, Kasatani H and Deguchi K 2012 Phys. Rev. B 86 060102
[25] Laurita G, Page K, Suzuki S and Seshadri R 2015 Phys. Rev. B 92 214109
[26] Agarwal R, et al. 2018 Phys. Rev. B 97 054109
[27] Taib M F M, Yaakob M K, Hassan O H and Yahya M Z 2013 Integr. Ferroelectr. 142 119
[28] Taib M F M, Yaakob M K, Badrudin F W, Kudin T I T, Hassan O H and Yahya M Z A 2014 Integr. Ferroelectr. 459 134
[29] Uratani Y, Shishidou T and Oguchi T 2008 Jpn. J. Appl. Phys. 47 7735
[30] Zhang R Z, Wang D W, Li F, Ye H J, Wei X Y and Xu Z 2013 Appl. Phys. Lett. 103 062905
[31] Zhang R Z, Wang D W, Zhu X H, Ye H J, Wei X Y and Xu Z 2014 J. Appl. Phys. 116 174101
[32] Zhong W, Vanderbilt D and Rabe K M 1994 Phys. Rev. Lett. 73 1861
[33] Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B 52 6301
[34] H J Ye, Wang D W, Jiang Z J, Cheng S and Wei X Y 2016 Acta Phys. Sin. 65 237101 (in Chinese)
[35] Nishimatsu T, Iwamoto M, Kawazoe Y, and Waghmare U V 2010 Phys. Rev. B 82 134106
[36] Vanderbilt D and Cohen M H 2001 Phys. Rev. B 63 094108
[37] Kornev I A, Bellaiche L, Janolin P E, Dkhil B and Suard E 2006 Phys. Rev. Lett. 97 157601
[38] King-Smith R D and Vanderbilt D 1994 Phys. Rev. B 49 5828
[39] Jiang Z J, Xu B, Li F, Wang D, and Jia C L 2015 Phys. Rev. B 91 014105
[40] Al-Barakaty A, Prosandeev S, Wang D, Dkhil B, Bellaiche L 2015 Phys. Rev. B 91 214117
[41] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
[42] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[43] Blochl P E 1994 Phys. Rev. B 50 17953
[44] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comput. Mater. Sci. 81 446
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Liu K, Fan H Q, Ren P R and Yang C 2010 J. Alloys Compd. 509 1901
[47] Zhang J X, He Q, Trassin M, et al. 2011 Phys. Rev. Lett. 107 147602
[48] Zhang N, Yokota H, Glazer A M, Ren Z, Keen D A, Keeble D S, Thomas P A and Ye Z G 2014 Nat. Commun. 5 5231
[49] Lu X, Zheng L, Li H and Cao W 2015 J. Appl. Phys. 117 134101
[50] Liu H, Chen J, Fan L, Ren Y, Pan Z, Lalitha K V, Rdel J and Xing X 2017 Phys. Rev. Lett. 119 017601
[51] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Ann. Rev. Mater. Res. 37 589
[52] Xue D Z, Zhou Y M, Bao H X, Gao J H, Zhou C and Ren X B 2011 Appl. Phys. Lett. 99 122901
[53] Liu L J, Zheng S Y, Huang Y M, Shi D P, Wu S S, Fang L, Hu C Z and Elouadi B 2012 J. Phys. D: Appl. Phys. 45 295403
[54] Guo R, Cross L E, Park S E, Noheda B, Cox D E and Shirane G 2000 Phys. Rev. Lett. 84 5423
[55] Cox D E, Noheda B, Shirane G, Uesu Y, Fujishiro K and Yamada Y 2001 Appl. Phys. Lett. 79 400
[56] Liu L J, Huang Y M, Li Y H, Fang L, Dammak H, Fan H Q and Thi M P 2012 Mater. Lett. 68 300
[57] Wada S, Suzuki S, Noma T, Suzuki T, et al. 1999 Jpn. J. Appl. Phys. 38 5505
[58] Wang D W, et al., 2011 Phys. Rev. Lett. 107 175502
[59] Pitike K C, Parker W D, Louis L and Nakhmanson S M 2015 Phys. Rev. B 91 035112
[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[3] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[4] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[5] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[6] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[7] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[8] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[9] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[10] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[11] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[12] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[13] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[14] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[15] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
No Suggested Reading articles found!