Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117801    DOI: 10.1088/1674-1056/ac6492

A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure

Wenbo Cao(曹文博)1,2, Youquan Wen(温又铨)1,2, Chao Jiang(姜超)1,2,†, Yantao Yu(余延涛)1,2, Yiyu Wang(王艺宇)1,2, Zheyipei Ma(麻哲乂培)1,2, Zixiang Zhao(赵子翔)1,2, Lanzhi Wang(王兰志)1,2, and Xiaozhong Huang(黄小忠)1,2,‡
1 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China;
2 State Key Laboratory of Powder Metallurgy and Hunan Key Laboratory of Advanced Fibers and Composites, Central South University, Changsha 410083, China
Abstract  A pure dielectric metamaterial absorber with broadband and thin thickness is proposed, whose structure is designed as a periodic cross-hole array. The pure dielectric metamaterial absorber with high permittivity is prepared by ceramic reinforced polymer composites. Compared with those with low permittivity, the absorber with high permittivity is more sensitive to structural parameters, which means that it is easier to optimize the equivalent electromagnetic parameters and achieve wide impedance matching by altering the size or shape of the unit cell. The optimized metamaterial absorber exhibits reflection loss below -10 dB in 7.93 GHz-35.76 GHz with a thickness of 3.5 mm, which shows favorable absorption properties under the oblique incidence of TE polarization (±45°). Whether it is a measured or simulated value, the strongest absorbing peak reaches below -45 dB, which exceeds that of most metamaterial absorbers. The distributions of power loss density and electric and magnetic fields are investigated to study the origin of their strong absorbing properties. Multiple resonance mechanisms are proposed to explain the phenomenon, including polarization relaxation of the dielectric and edge effects of the cross-hole array. This work overcomes the shortcomings of the narrow absorbing bandwidth of dielectrics. It demonstrates that the pure dielectric metamaterial absorber with high permittivity has great potential in the field of microwave absorption.
Keywords:  dielectric      metamaterial absorber  
Received:  24 November 2021      Revised:  28 February 2022      Accepted manuscript online:  06 April 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Project supported in part by the Young Scientific and Technological Innovation Talents in Hunan, China (Grant No. 2021RC3003), the Science and Technology Plan Project of Hunan Province, China (Grant No. 2015TP1007), Initial Research Funding for Special Associate Professor by Central South University (Grant No. 202045002), and the National Natural Science Foundation for Young Scientists of China (Grant No. 51802353).
Corresponding Authors:  Chao Jiang, Xiaozhong Huang     E-mail:;

Cite this article: 

Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠) A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure 2022 Chin. Phys. B 31 117801

[1] Landy N I, Sajuyigbe S and Mock J J 2008 Phys. Rev. Lett. 100 207402
[2] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995
[3] Yao Z, Xiao S, Jiang Z, Yan L and Wang B 2020 IEEE Antennas Wirel. Propag. Lett. 19 591
[4] Li J, Jiang J, He Y, Xu W, Chen M, Miao L and Bie S 2016 IEEE Antennas Wirel. Propag. Lett. 15 774
[5] He Y, Jiang J, Chen M, Li S, Miao L and Bie S 2016 J. Appl. Phys. 119 105103
[6] Zhang F, Wang Q, Zhou T, Xiong Y, Wen Y, Jiang C, Wang Y, Du Z, Abrahams I, Wang L and Huang X 2020 J. Alloys Compd. 814 152300
[7] Zhang F, Jiang C, Wang Q, Zhao Z, Wang Y, Du Z, Wang C and Huang X 2020 Appl. Phys. Express 13 084001
[8] Wang Q, Bi K and Lim S 2020 IEEE Access 8 175998
[9] Ghosh S, Bhattacharyya S and Srivastava K V 2016 IET Microw. Antennas Propag. 10 850
[10] Jiang W, Yan L, Ma H, Fan Y, Wang J, Feng M and Qu S 2018 Sci. Rep. 8 4817
[11] Zhang G, Wang L, Zhou Y, Zhou P, Chen H and Deng L 2018 Appl. Phys. A 124 453
[12] Li W, Wu T, Wang W, Zhai P and Guan J 2014 J. Appl. Phys. 116 044110
[13] Huang Y, Yuan X, Chen M, Song W L, Chen J, Fan Q, Tang L and Fang D 2018 ACS Appl. Mater. Interfaces 10 44731
[14] Wang A, Wang B, Wang J, Yan M, Li Y, Wang W and Qu S 2019 J. Phys. D 53 095304
[15] Wang Q, Tang X, Zhou D, Du Z and Huang X 2017 IEEE Antennas Wirel. Propag. Lett. 16 3200
[16] Fan C, Tian Y, Ren P and Jia W 2019 Chin. Phys. B 28 076105
[17] Meng X, Zhang X, Lu C, Pan Y and Wang G 2014 J. Mater. Chem. A 2 18725
[18] Gong P, Hao L, Li Y, Li Z and Xiong W 2021 Carbon 185 272
[19] Yin L, Tian X, Shang Z and Li D 2019 Mater. Lett. 239 132
[20] Li L, Wang J, Wang J, Ma H, Du H, Zhang J, Qu S and Xu Z 2016 Sci. Rep. 6 24178
[21] Zhao Q, Zhou J, Zhang F and Lippens D 2009 Mater. Today 12 60
[22] Liu X, Lan C, Li B, Zhao Q and Zhou J 2016 Sci. Rep. 6 28906
[23] Fante R L and McCormack M T 1988 IEEE Antennas Wirel. Propag. Lett. 36 1443
[24] Chen H T 2012 Opt. Express 20 7165
[25] Psarras G C 2010 Phys. Prop. Appl. Poly. Nano. 124 31
[26] Zhou D, Huang X, Du Z and Wang Q 2016 Prog. Electromagn. Res. 52 57
[27] Yannopapas V and Moroz A 2005 J. Phys. Condens. Matter 17 3717
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[6] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[7] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[8] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见). Chin. Phys. B, 2022, 31(5): 057802.
[11] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[12] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[13] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
No Suggested Reading articles found!