Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127801    DOI: 10.1088/1674-1056/27/12/127801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial

Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

The effect of a sandwiched cross-shaped metamaterial absorber (CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber (PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current, electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.

Keywords:  polyurethane foam absorber      metamaterial      broadband microwave      absorption mechanism  
Received:  09 July 2018      Revised:  03 September 2018      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Ja (Polarization)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 51802352), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2018zzts355).

Corresponding Authors:  Lian-Wen Deng     E-mail:  denglw@csu.edu.cn

Cite this article: 

Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥) Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial 2018 Chin. Phys. B 27 127801

[1] Li Y Q, Zhang H, Fu Y Q and Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473
[2] Wang F, Jiang W, Hong T, Xue H, Gong S and Zhang Y 2014 IET Microw. Anten. Propag. 8 491
[3] Wu K H, Cheng K F, Wang J C and Chang Y C 2017 Mater. Express 7 500
[4] He J, Deng L W, Liu S, Yan S Q, Luo H, Li Y H, He L H and Huang S X 2017 J. Magn. Magn. Mater. 444 49
[5] Deng L W, Ding L, Zhou K S, Huang S X, Hu Z W and Yang B C 2011 J. Magn. Magn. Mater. 323 1895
[6] Perez D, Gil I, Gago J, Fernandez-Garcia R, Balcells J, Gonzalez D, Berbel N and Mon J 2012 IEEE Trans. Compon. Pack. Manuf. Technol. 2 240
[7] Nesimoglu T and Sabah C 2017 IEEE Trans. Circuits Syst. Ⅱ-Express Briefs 63 89
[8] Cheng Y Z, Gong R Z, Nie Y and Wang X 2012 Chin. Phys. B 21 127801
[9] Wen B, Zhao J J, Duan Y P, Zhang X G, Zhao Y B, Dong C, Liu S H and Li T J 2006 J. Phys. D: Appl. Phys. 39 1960
[10] Liu X G, Or S W, Ho S L, Cheung C C, Leung C M, Han Z, Geng D Y and Zhang Z D 2012 J. Alloys Compd. 531 9071
[11] Ohlan A, Singh K, Chandra A and Dhawan S K 2008 Appl. Phys. Lett. 93 205
[12] Zhu Z T, Sun X, Li G X, Xue H R, Guo H, Fan X L, Pan X C and He J P 2015 J. Magn. Magn. Mater. 377 95
[13] Singh P, Babbar V K, Razdan A, Puri R K and Goel T C 2000 J. Appl. Phys. 87 4362
[14] Sudeep P M, Vinayasree S, Mohanan P, Narayanan T N and Anantharaman M R 2015 Appl. Phys. Lett. 106 061301
[15] Abbas S M, Dixit A K, Chatterjee R and Goel T C 2007 J. Magn. Magn. Mater. 309 20
[16] Cao C M, Dong C H, Yao J L and Jiang C J 2018 Chin. Phys. B 27 017503
[17] Zhao B, Han Q and Zhu Y 2013 Express Polym. Lett. 7 212
[18] Gupta K K, Abbas S M, Goswami T H and Abhyankar A C 2014 J. Magn. Magn. Mater. 362 216
[19] Smith D R, Pendry J B and Wiltshire M C 2004 Science 305 788
[20] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, A Genov D, Bartal G and Zhang X 2008 Nature 455 376
[21] Hao J M, Yan W and Qiu M 2010 Appl. Phys. Lett. 96 4184
[22] Chen H T, Zhou J F, O'Hara J F, Chen F, Azad A K and Taylor A J 2010 Phys. Rev. Lett. 105 073901
[23] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[24] Gu S, Barrett J P, H, T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[25] Ozbay E, Aydin K, Cubukcu E and Bayindir M 2003 IEEE Trans. Anten. Propag. 51 2592
[26] Agranovich V M, Shen Y R, Baughman R H and Zakhidov A A 2004 Phys. Rev. B 69 1124
[27] Hui Y C, Wang C Q and Huang X Z 2015 Acta Phys. Sin. 64 218102 (in Chinese)
[28] Cheng Y Z, Yang H L, Cheng Z Z and Wu N 2011 Appl. Phys. A: Mater. Sci. Process. 102 99
[29] Cheng Y Z, Yang H L, Cheng Z Z and Xiao B X 2011 Photon. Nanostruct. 9 8
[30] Ma W, Wen Y and Yu X 2013 Opt. Express 21 30724
[31] Li Z, Stan L, Czaplewski D A, Yang X and Gao J 2018 Opt. Express 26 5616
[32] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[33] Wu J S, Duan Y P and Xi Q 2017 J. Mater. Sci.: Mater. Electron. 28 3075
[34] Ma J N, Zhang X M, Liu W and Ji G B 2016 J. Mater. Chem. C 4 11419
[35] Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[36] Bu D D, Yue C S, Zhang G Q, Hu Y T and Dong S 2016 Chin. Phys. B 25 067802
[37] Xu Y S, Bie S W, Jiang J J, Xu H B, Wang D and Zhou J 2014 Acta Phys. Sin. 63 205202 (in Chinese)
[38] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[6] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[12] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!