Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057301    DOI: 10.1088/1674-1056/25/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles modeling hydrogenation of bilayered boron nitride

Jing Wang(王静), Peng Zhang(张鹏), Xiang-Mei Duan(段香梅)
Department of Physics, Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  

We have investigated the structural and electronic characteristics of hydrogenated boron-nitride bilayer (H-BNBN-H) using first-principles calculations. The results show that hydrogenation can significantly reduce the energy gap of the BN-BN into the visible-light region. Interestingly, the electric field induced by the interface dipoles helps to promote the formation of well-separated electron-hole pairs, as demonstrated by the charge distribution of the VBM and CBM. Moreover, the applied bias voltage on the vertical direction of the bilayer could modulate the band gap, resulting in transition from semiconductor to metal. We conclude that H-BNBN-H could improve the solar energy conversion efficiency, which may provide a new way for tuning the electronic devices to meet different environments and demands.

Keywords:  hydrogenated bilayer boron-nitride      photocatalyst      first-principles calculations     
Received:  11 January 2016      Published:  05 May 2016
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574167).

Corresponding Authors:  Xiang-Mei Duan     E-mail:  duanxiangmei@nbu.edu.cn

Cite this article: 

Jing Wang(王静), Peng Zhang(张鹏), Xiang-Mei Duan(段香梅) First-principles modeling hydrogenation of bilayered boron nitride 2016 Chin. Phys. B 25 057301

[1] Fujishima A and Honda K 1972 Nature 238 37
[2] Maeda K and Domen K 2010 J. Phys. Chem. Lett. 1 2655
[3] Chen X B, Shen S H, Guo L J and Mao S S 2010 Chem. Rev. 110 6503
[4] Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
[5] Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
[6] Gai Y Q, Li J B, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
[7] Yin W J, Wei S H, Al-Jassim M M and Yan Y F 2011 Phys. Rev. Lett. 106 066801
[8] Mete E, Uner D, Gülseren O, and Ellialtıoğlu Ş 2009 Phys. Rev. B 79 125418
[9] Kudo A and Miseki Y 2009 Chem. Soc. Rev. 38 253
[10] Ma X G, Lv Y H, Xu J, Liu Y F, Zhang R Q and Zhu Y F 2012 J. Phys. Chem. C 116 23485
[11] Wu F, Liu Y F, Yu G X, Shen D F, Wang Y L and Kan E J 2012 J. Phys. Chem. C 3 3330
[12] Li X R, Dai Y, Ma Y D, Han S H and Huang B B 2014 Phys. Chem. Chem. Phys. 16 4230
[13] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R and Smith S C 2012 J. Am. Chem. Soc. 134 4393
[14] Du A J, Ng Y H, Bell N J, Zhu Z H, Amal R and Smith S C 2011 J. Phys. Chem. Lett. 2 894
[15] Gao H T, Li X H, Lv J and Liu G J 2013 J. Phys. Chem. C 117 16022
[16] Wang J J, Guan Z Y, Huang J, Li Q X and Yang J L 2014 J. Mater. Chem. A 2 7960
[17] Li X X, Li Z Y and Yang J L 2014 Phys. Rev. Lett. 112 018301
[18] Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 12 5188
[24] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[25] Zhong X L, Yap Y K, Pandey R and Karna S P 2011 Phys. Rev. B 83 193403
[26] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[27] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[28] Li X X, Zhao J and Yang J L 2013 Scientific Reports 3 1858
[29] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter. 21 084204
[30] Zhang R Q, Liu X M, Wen Z and Jiang Q 2011 J. Phys. Chem. C 115 3425
[31] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[32] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[33] Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 81 2312
[34] Benedict L X, Shirley E L and Bohn R B 1998 Phys. Rev. Lett. 80 4514
[35] Albrecht S and Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510
[36] Cao T F, Zheng X H, Huang L F, Gong P L and Zeng Z 2014 J. Phys. Chem. C 118 10472
[1] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[2] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[3] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[4] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[5] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[6] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[7] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[8] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[9] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[10] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[11] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[12] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[13] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[14] Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+
Xi-Long Dou(豆喜龙), Xiao-Yu Kuang(邝小渝), Xin-Xin Xia(夏欣欣), Meng Ju(巨濛). Chin. Phys. B, 2019, 28(1): 017107.
[15] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
No Suggested Reading articles found!